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Preface

The present document is the Final Report of the ESTEC Project 4000103566/11/NL/FvO/ef
”Towards a Better Understanding of the Earth’s Interior and Geophysical Exploration Re-
search – GOCE-GDC” in the frame of the GOCE+ Theme 2 which is a part of the Support To
Science Element (STSE) of the ESA’s Earth Observation Envelope Program (EOEP) aiming
to reinforce the scientific component of the ESA Living Planet programme. The presented
work has been carried out by the consortium led by prof. Pavel Novák residing at the Uni-
versity of West Bohemia in Pilsen, the Czech Republic, within the time period of October
2011 – August 2013.

v





Contents

Preface v

List of Figures xi

List of Tables xxi

Abbreviations xxiii

1 Introduction 1
1.1 Scope of the project GOCE-GDC . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Work packages of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Management and reporting of the project (WP7) . . . . . . . . . . . . . . . . . 5

1.4 Scientific outputs and feedback from the community . . . . . . . . . . . . . . 7

2 GOCE data pre-processing (WP2 and WP3) 11
2.1 Combination of GOCE and GRACE gravitational gradients in the spectral

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 GRACE-only gravitational gradients . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Reference frame rotations . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Combined GRACE/GOCE gravitational gradients . . . . . . . . . . . . 13

2.1.4 Validation of the preliminary gradients . . . . . . . . . . . . . . . . . . 15

2.2 Validation of gravitational gradients provided by Consortium 1 . . . . . . . . 21

2.2.1 Validation of gravitational gradients in GRF . . . . . . . . . . . . . . . 21

2.2.2 Validation of gravitational gradients in LNOF . . . . . . . . . . . . . . 22

2.2.3 Validation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Continuation of GRACE/GOCE gravitational gradients to a mean orbital sphere 25

2.3.1 Computing radial derivatives of gravitational gradients . . . . . . . . 26

2.3.2 Nominal accuracy of the radial derivative . . . . . . . . . . . . . . . . . 26

2.3.3 Consistency of continued gradients with TIM-r3 . . . . . . . . . . . . . 27

2.3.4 Gradient spectra along the real orbit and on the mean orbital sphere . 29

2.4 Gridding GRACE/GOCE gradients on the mean orbital sphere . . . . . . . . 30

2.4.1 Note on the algorithm gridfit . . . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Choice of the grid resolution . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Selection of the smoothing parameter . . . . . . . . . . . . . . . . . . . 32

2.5 Output summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



3 Downward continuation of gradient data (WP3) 37
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Differences of GRACE/GOCE global gravitational models . . . . . . . . . . . 38

3.3 Iterative downward continuation and Poisson’s integral equation . . . . . . . 38

3.3.1 Iterative solution of to the Fredholm equation of the first kind . . . . . 40

3.3.2 Poisson’s integral equation . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.3 1-D FFT approach applied to the Poisson integral equation . . . . . . . 42

3.4 Application to GRACE/GOCE gradient data . . . . . . . . . . . . . . . . . . . 44

3.4.1 Results for continuation of GRACE/GOCE gradient data . . . . . . . . 46

3.5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Validation and combination of GGs (WP3) 53
4.1 Estimation of gravitational gradients from ground gravity . . . . . . . . . . . 54

4.1.1 Testing estimation of gravitational gradients from ground gravity . . . 57

4.1.2 Estimation of gravitational gradients over the two study areas . . . . . 61

4.2 Validation and combination of gravitational gradients . . . . . . . . . . . . . . 62

4.3 Results and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Topographic reduction of GGs (WP3) 71
5.1 Topographic effects by spectral modelling . . . . . . . . . . . . . . . . . . . . . 72

5.2 Topographic effects by numerical integration . . . . . . . . . . . . . . . . . . . 76

5.3 Topographic effects from the KIT model . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Results and summary – topographic effects . . . . . . . . . . . . . . . . . . . . 78

5.5 Gradient effects of internal mass structures . . . . . . . . . . . . . . . . . . . . 83

5.6 Output summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Geophysical applications: study area A (WP4) 89
6.1 Layering of the cooling-plate model . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2 Forward modelling of gravitational gradients . . . . . . . . . . . . . . . . . . . 94

6.3 Tests of the forward modelling code . . . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Model improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Mantle density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.8 Could GOCE gradients sensibly be used in geophysical models? . . . . . . . . 100

6.9 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Geophysical applications: study area B (WP5) 105
7.1 Inverse gravimetric problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.1 Hadamard’s criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.2 Non-uniqueness of IGP . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.3 Minimum-norm solution of IGP . . . . . . . . . . . . . . . . . . . . . . 106

7.1.4 The decomposition of L2 space . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.5 Instability of IGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



7.2 A refined model of sedimentary rock cover in the southeastern part of the
Congo Basin from GRACE/GOCE gravitation and vertical gravitational gra-
dient observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Spherical harmonic analysis of the Congo sedimentary map . . . . . . 112
7.2.3 External gravitational potential induced by sediments . . . . . . . . . 114
7.2.4 Sediment density contrast model . . . . . . . . . . . . . . . . . . . . . . 115
7.2.5 Expansion of the power of the basin topography into spectral harmonics116
7.2.6 Scaled potential coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.7 Mass-density Green’s functions for gravitation and vertical gravita-

tional gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.2.8 Refined model of the thickness of the Congo Basin . . . . . . . . . . . . 124
7.2.9 Other gravitational signals . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.2.10 The inverse problem for sediment density contrast . . . . . . . . . . . 131
7.2.11 Discussion and conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3 Mass-density Green’s functions for gravitational gradients . . . . . . . . . . . 139
7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3.2 Green’s functions for gravitation and gravitational gradients . . . . . 140
7.3.3 Spherical-harmonic form of Green’s functions for the gravitational po-

tential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3.4 Spherical-harmonic form of the Green’s function for gravitation . . . . 142
7.3.5 Spherical-harmonic form of the Green’s function for gravitational gra-

dient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.3.6 Closed form of the isotropic kernels of the Green’s function for the

gravitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
7.3.7 Closed form of the isotropic kernels of the Green’s function for gravi-

tational gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
7.3.8 Three types of gravitational gradients . . . . . . . . . . . . . . . . . . . 148
7.3.9 Omission error of the downward-continued GOCE gravitational gra-

dients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3.10 Sensitivity of gravitational gradients to the depth of density anomaly . 152
7.3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4 Independent crustal thickness estimates through Euler deconvolution . . . . 156
7.4.1 Euler’s homogeneous function theorem . . . . . . . . . . . . . . . . . . 157
7.4.2 Standard Euler deconvolution . . . . . . . . . . . . . . . . . . . . . . . 157
7.4.3 Total least squares (TLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.4.4 Gauß-Helmert model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.4.5 Gridding of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.4.6 Related research/programming of minor importance . . . . . . . . . . 162
7.4.7 Results, conclusions and open questions . . . . . . . . . . . . . . . . . 163

8 Impact assessment report 167
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

8.1.1 Purpose of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167



8.1.2 Study areas of the project . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.1.3 Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

8.2 Utility of GOCE gradients for geophysical modelling . . . . . . . . . . . . . . 169
8.2.1 Reykjanes Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.2.2 Sensitivity analysis: Green’s functions for mass densities . . . . . . . . 175

8.3 Gridded GOCE gravitational gradients . . . . . . . . . . . . . . . . . . . . . . 176
8.4 Improvements of geophysical understanding through GOCE . . . . . . . . . . 178

8.4.1 Reykjanes Ridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.4.2 Congo Basin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.5 Information content of in-orbit gradients vs. gridded gradients vs. global mod-
els . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.6 Gravity gradients at satellite altitude vs. downward continued ones . . . . . . 190

References 193

A Appendix I
A.1 Hotine’s harmonics and normalization factors . . . . . . . . . . . . . . . . . . I
A.2 Nominal accuracy of DC to MOS . . . . . . . . . . . . . . . . . . . . . . . . . . IV
A.3 Original and data at MOS versus TIM-r3 . . . . . . . . . . . . . . . . . . . . . . V
A.4 Linear spectral density before and after UDC to MOS . . . . . . . . . . . . . . VI
A.5 Topographic gradient effects – Vzz . . . . . . . . . . . . . . . . . . . . . . . . . VIII



List of Figures

1.1 Project team, Noordwijk, 24 September 2013, from left around the table clock-
wise: Pavel Novák, Dimitrios Tsoulis, Oliver Baur, Zdeněk Martinec, Roger
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1 Introduction

On 17 March 2009 ESA’s Gravity field and steady-state Ocean Circulation Explorer (GOCE)
was launched successfully into orbit. The GOCE satellite materializes one of the satellite
missions under the umbrella of the Agency’s Living Planet programme dedicated to ob-
serving the Earth from space. The main objective of the mission is to map a global static
gravitational field of the Earth with unprecedented accuracy and resolution (1 mGal = 10−5

m s−2 at the resolution of 100 km). The final global gravitational model shall provide the
worldwide scientific community with a well-defined data product for the following appli-
cation areas (non-exhaustive list):

• Solid Earth’s geophysics: improved understanding of geodynamics associated with the
lithosphere, mantle composition and rheology, uplift and subduction processes.

• Oceanography: better modelling of ocean currents and heat transport.

• Geodesy: establishment of a global height-reference system for studying topographic
processes and sea-level changes.

• Glaciology: enhanced estimates of the thickness of polar ice-sheets and their move-
ments.

The GOCE spacecraft was launched into a Sun-synchronous near-circular orbit with the
inclination of 96.7 arc-deg. GOCE was initially placed into orbit at an altitude of about
290 km from where the satellite was left to gradually descend to its operational altitude
of around 273 km. During the decaying orbit many crucial initialization procedures in the
spacecraft were performed. On 6 April 2009 the electric ion propulsion engine was switched
on successfully. This sophisticated system produces a gentle, stable and smooth thrust on
the opposite direction to the satellite movement (along track). Following the utilization of
the ion propulsion engine the main instrument of the GOCE satellite, its 3-axes gradiometer
started working on 8 April 2009.

1.1 Scope of the project GOCE-GDC

One of the main objectives and at the same time challenges for the user scientific commu-
nity is to apply observed gravitational gradients for solid Earth research, see the text above.
Objectives of the GOCE mission in this application area include namely improved under-
standing and modelling of the Earth’s interior and its dynamic processes: GOCE data shall

1



2 1 Introduction

provide new insights into geodynamics associated with the lithosphere, mantle composi-
tion and rheology, uplift and subduction processes. The GOCE gradiometric mission was
conceived and implemented with the goal to achieve more sophisticated medium-to-short
wavelength gravitational field modelling. Such information should be applicable in solid
Earth geophysics to identify local hidden mass anomalies in the Earth’s upper crust. Comb-
ing GOCE gradiometric data with data from GRACE along GOCE orbit and at regular co-
ordinate grids over a mean orbital sphere provides input data for geophysical modelling.
Additionally, satellite gradient data can be downward continued do the Earth’s surface and
blended with local ground gravity or altimetry data increasing their spatial resolution down
to several km. In such a way satellite gravitational gradients are enhanced for smaller scales
that are potentially important for geophysical modelling. Additional data sources such as
magnetic and seismology in situ data can also be used (however, they were not used in this
project).

The scope of the GOCE-GDC project was to improve currently available regional geo-
physical models of the upper mantle over two distinct geographical areas selected by the
research team:

Study area A – Reykjanes Ridge

With the launch of the GOCE satellite, studies of seamounts, plateaus and basins become
feasible ESA (1999). Mid-ocean ridges are key areas for plate tectonics because of creation of
a new crust and generation of a ridge push that partly drives plate motion. Sharp features of
the ridges are clearly visible in global maps of gravity anomalies over the oceans Sandwell
and Smith (1997). This makes them ideal targets for studying the impact of GOCE grav-
itational gradients on solid Earth geophysics. The Reykjanes Ridge south-west of Iceland
(15-35 arc-deg W, 53-65 arc-deg N) as a small-scale study area was selected. The fundamen-
tal geophysical problem is the origin of the V-shaped ridge (Hey et al., 2010; Hartley et al.,
2011). Within the project, the model of Turcotte and Schubert (2002) is used as an initial geo-
physical model that predicts a thickness of the lithosphere and its mass density as a function
of distance from the ridge. This model is used to investigate the sensitivity of gravitational
gradient products produced within the project to parameters in the model of Turcotte and
Schubert (2002).

Study area B – Congo Basin

The African continent, in particular due the Kaapvaal craton, the Tanzania craton, the Congo
Basin and the East African Rift, is one of the best natural laboratories in the world for study-
ing the lithospheric mantle, given the wealth of xenolith and seismic data that exist for
this continent. The Southern African Magnetotelluric Experiment (SAMTEX) was initiated
(September 2003) to complement these datasets and to provide further constraints on phys-
ical parameters of the lithospheric mantle in this region by obtaining information about
regional 3-D electrical conductivity variations. Comparisons of seismic wave velocities at
various depths have been made between a new high-resolution (1.5 arc-deg) seismic model,
derived from inversion of surface wave arrivals from events along continental paths, with
new images of the electrical conductivity (including the use of data from SAMTEX). These
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comparisons reveal correlations at both large and small scales, defined quantitatively by a
quadratic regression between log(resistivity) and seismic velocity. The comparisons indicate
that both parameters are functions of the same parameters, namely temperature, physical
state, magnesium number and composition. In this study area, gradient products of the
project were particularly applied to derivation of a refined model of a sedimentary rock
cover of the Congo Basin based on the global sedimentary model of Laske and Masters
(1997) and the regional model of Kadima, Ntabwoba and Lucazeau (2011).

1.2 Work packages of the project

The work flow of the project was initially divided into 7 work packages that were described
in details in TP and FMAP of the project. Below there is a short summary of goals and activ-
ities within 6 work packages. Activities and results within each work package are described
in Chapters 2-7 of this report. The 7th work package covered management and reporting of
the project. Highlights of this work package are described in this chapter.

Work Package 1 – Project objectives: One of the basic scientific goals of the GOCE mis-
sion is the ambition to improve understanding of the Earth’s interior and its dynamic pro-
cesses (lithosphere-related geodynamics, mantle composition and rheology, uplift and sub-
duction processes). The challenge of understanding and interpreting the GOCE observables
lies in the difficulty of relating them directly to a specific source or origin. In an unprece-
dented satellite measurement principle, the GOCE gradiometer observes directly the Earth’s
gravity field at satellite altitude in terms of gravitational gradients. Taking in account the
actual measurement bandwidth of the GOCE gradiometer, an interpretable residual signal
has to be related to some known mass structures within the Earth’s interior. The actual re-
lation of the GOCE gravitational gradients to some characteristic geophysical features and
the identification of interpretable bandwidths in the gradiometer observables had to be de-
termined first.

Work Package 2 – Preliminary combined gravitational gradients: The main goal of this
work package was to provide a GRACE-only and two preliminary combined GRACE/GOCE
gravitational gradient data sets along the GOCE orbit. These initial data sets covered the
first two months of GOCE science data, i.e., from November to December 2009. Gravita-
tional gradients were evaluated over the two study areas, therefore appropriate delineation
had to be defined. This data had been used for initial geophysical investigations and testing
in the early stage of the project. They were replaced in the course of the project by the ”best
available” combined gravitational gradients at satellite altitude as delivered by the Consor-
tium 1 (GOCE+ project “GeoExplore for Geophysical Research”) in November 2012. This
final data set is based on re-processed GOCE gravitational gradients covering the period of
2009/11/01 – 2012/12/06.

Work Package 3 – Final combined gravitational gradients: Gravitational gradients ob-
served by the GOCE gradiometer were combined with the GRACE data to yield the best
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available combined GRACE/GOCE gravitational gradients along GOCE orbits. These grav-
itational gradients over the two study areas were produced according to formulated speci-
fications in WP1.1 by the Consortium 1. They were incorporated by the study team, thus, it
became a regular user group member of the Consortium 1. The combined GRACE/GOCE
gravitational gradients were continued to a mean orbital sphere (data product 1), interpo-
lated to nodes of a regular spherical coordinate grid (data product 2) and downward con-
tinued to a reference sphere close to the Earth’s surface but everywhere outside the Earth’s
masses (data product 3). Finally, downward continued combined GRACE/GOCE gravi-
tational gradients were merged with gravitational gradients derived from altimetry data
(study area A) and ground gravity observations (study area B) to form the data product 4.
Over the study area A, sea surface topography was used after removal of the dynamic to-
pography for derivation of gravitational gradients. As a part of data product preparation
gravitational gradients derived by forward modelling techniques from given global models
of topography, continental ice sheets and bathymetry were derived as well.

Work Package 4 – Geophysical test scenario A: Mid-ocean ridges are one of the promi-
nent features in global gravity maps and contain a wealth of information on the state of
newly formed lithosphere and the upper mantle. The Reykjanes Ridge south-west of Iceland
is well studied, being a key area for the development of plate tectonic theory. Moreover,
its location at that high latitudes has the advantage of dense GOCE ground tracks, while
still being covered with altimetry data. Finally, the ridge has been studied with altimetry
(Hwang and Parsons, 1995) and has been the subject of extensive ship surveys (Talwani
et al., 1971). Mid-ocean ridges are prime examples of Pratt compensation (e.g., Watts 2009)
which is sometimes also labelled thermal isostasy (Turcotte and Schubert, 2002). However,
short-wavelength features exist that are not isostatically compensated and departures from
the Pratt model occur on the rift flanks (Lambeck, 1988). The main contribution of GOCE
gravitational gradients is at spatial wavelengths of about 800 to 90 km; the Reykjanes Ridge
falls within that range. The Reykjanes ridge is particularly suitable because it is uninter-
rupted by transform faults for a long distance. Using bathymetry and seismic data it is
possible to create a detailed geophysical model for the simulation of gravitational gradient
anomalies. Studying mid-oceanic ridges is important for understanding how oceanic crust
forms and evolves (Lambeck, 1988, p. 451). Extensive volcanism in Iceland is usually at-
tributed to a mantle plume. However, it is unclear whether the mantle plume spreads along
the ridge in a narrow channel, or spreads radially away from the ridge (Delorey et al., 2007).
Another research question pertains to the formation of V-shaped ridges near Iceland (Hey
et al., 2010; Hartley et al., 2011).

Work Package 5 – Geophysical test scenario B: The study area B is the African conti-
nent. There were several reasons for choosing this region: (i) GOCE data allows resolving
structural features of continental to regional scales (the dipole character of the African to-
pography probably reflects various gravitational supports), (ii) the southern and eastern
mountainous topography is probably supported dynamically by the global-scale mantle
convection, whereas northern and middle parts are probably supported either by classical
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isostatic compensation mechanism (e.g., Atlas Mountains) or near-edge small-scale man-
tle convection (Congo Basin), (iii) there are two recent seismic tomographic models of the
African lithosphere (Lebedev and van der Hilst, 2008; Fishwick, 2010), three models of the
crustal thickness estimates across Africa (a) Nataf and Ricard (1996); (b) the global model
Crust2.0 (Bassin et al., 2000), and (c) the surface-wave study of Pasyanos and Nyblade (2007)
and recent model for the mantle flow below Africa driven by mass inhomogeneities (Forte
et al., 2010), and finally (iv) crustal thickness of the African continent has recently been es-
timated from global gravitational models, derived from GRACE satellite gravimetry (Tedla
et al., 2011). To demonstrate a benefit of GOCE gravitational gradients, geophysical models
created with the help of GOCE gravitational gradients were compared with a present-day
knowledge, which consists of mass densities derived from seismic tomographic models.
Ground gravity data have not been used extensively so far in interpretations for density
stratifications over the African continent. Short-wavelength instabilities in density parame-
ters when solving the inverse gradiometric problem imply that only regional density varia-
tions will be determined.

Work Package 6 – Conclusions and recommendations: This work package covered the
composition of the final Impact Assessment Report (IAR), review and critical analysis of all
feedbacks from scientists and authorities and composition of the Scientific Roadmap (SR).
These documents represent independent deliverables of the project which were delivered to
ESA separately as well as all the other text documents of the project.

1.3 Management and reporting of the project (WP7)

Research activities and results within the work packages 1-6 are described in the respec-
tive chapters of this report. The Work Package 7 covered management of the project and
reporting. These activities are briefly described herein. The project was conducted by the
consortium led by UWB. The consortium consisted of 6 institutes from 6 European countries
(all ESA member states):

• UWB – University of West Bohemia, Department of Mathematics, Czech Republic,

• AAS – Austrian Academy of Sciences, Space Research Institute, Austria,

• AUT – Aristotle University of Thessaloniki, Department of Geodesy and Surveying,
Greece,

• DIAS – Dublin Institute for Advanced Studies, Geophysics Section, Ireland,

• GIS – University of Stuttgart, Institute of Geodesy, Germany,

• TUD – Technical University Delft, Astrodynamics and Space Missions, Netherlands.

Pavel Novák from UWB as the prime contractor of the project was responsible for the
execution of the Statement of Work as defined in the project contract and for the overall
scientific and administrative management of the project. The local project leaders were as
follows:
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• AAS – Oliver Baur,

• AUT – Dimitrios Tsoulis,

• DIAS – Zdeněk Martinec,

• GIS – Nico Sneeuw,

• TUD – Bert Vermeersen.

Figure 1.1: Project team, Noordwijk, 24 September 2013, from left around the table clock-
wise: Pavel Novák, Dimitrios Tsoulis, Oliver Baur, Zdeněk Martinec, Roger Haagmans
(ESA), Wouter van der Wal, Matthias Roth, Nico Sneeuw, Bert Vermeersen and Josef Sebera.

The project officially started on 30 October 2011. The project duration was originally
planned for 20 months. However, due to a delayed delivery of the final (re-processed) GOCE
gravitational gradients (instead of May 2012 the data became available in November 2012),
the project was extended for 3 months (with the respective CCN #1 approved by ESA on 6
June 2013). Since the project kick-off meeting of the project held at ESTEC/Noordwijk on 29
August 2011, the following progress/mid-term meetings were held:

• PM1 – University of West Bohemia in Pilsen, Czech Republic, 27-28 February 2012,

• PM2 – Aristotle University of Thessaloniki, Greece, 13-14 June 2012,

• MTR – ITC, Enschede, The Netherlands, 19 October 2012,

• PM3 – Dublin Institute for Advanced Studies, Dublin, Ireland, 21-22 February 2013,

• FR – ESTEC, Noordwijk, The Netherlands, 24-25 September 2013.

During the 1st International GOCE Solid Earth Workshop in Enschede, the Netherlands,
the joint meeting with the research team of the project GOCE+ ”GeoExplore for Geophysical
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Research” (Johannes Bouman as the prime contractor) was organized on 18 October 2012.
Members of the consortium (Pavel Novák, Josef Sebera and Zdeněk Martinec) also partici-
pated at the Splinter Meeting ”GOCE gradients for applications” that was held in Vienna on
10 April 2013 within the EGU General Assembly 2013.

1.4 Scientific outputs and feedback from the community

In order to further increase the awareness of the international scientific community to the
potential of the GOCE gravitational gradients and to promote results of the consortium, a
common information exchange interface was established using the world wide web as the
communication channel. The project website can be accessed at goce.kma.zcu.cz. Moreover,
a data repository of the project shared by all the members of the consortium was established
which maintained all data, results, project deliverables and documents of the project.

To promote the results and the project itself among the international geophysical com-
munity, the members of the consortium actively participated at several international confer-
ences and meetings. The list of given presentations is as follows:

1. Novák P, Baur O, Martinec Z, Sneeuw N, Tsoulis D, Vermeersen B, van der Wal W,
Roth M, Sebera J, Val’ko M, Hoeck F (2012). Towards a better understanding of the
Earth’s interior and geophysical exploration research ”GOCE-GDC”. 9th EGU General
Assembly 2012, Vienna, April 2012.

2. Novák P (2012). Evaluation of potential fields generated by Earth’s mass components.
International Symposium on Space Geodesy and Earth System, Shanghai, August
2012.

3. Root B, Novák P, van der Wal W, Vermeersen B (2012). Interpreting gravity anomalies
in Northwestern Europe, crustal thickening or GIA? Lithosphere-Cryosphere Interac-
tion Workshop Bochum, September 2012.

4. Novák P, Sebera J, Val’ko M (2012). On the downward continuation of gravitational
gradients. IAG Symposium on Gravity, Geoid and Height Systems. Venice, October
2012.

5. van der Wal W, Novák P, Martinec Z, Baur O (2012). Forward modeling gravity gra-
dients of the mid-ocean ridge near Iceland. IAG Symposium on Gravity, Geoid and
Height Systems. Venice, October 2012.

6. Novák P, Baur O, Martinec Z, Sneeuw N, Tsoulis D, Vermeersen B, van der Wal W,
Roth M, Sebera J, Val’ko M, Hoeck F (2012). Towards a better understanding of the
Earth’s interior and geophysical exploration research. 1st International GOCE Solid
Earth Workshop, Enschede, October 2012.

7. Bouman J, Novák P, Doorbos E, Rummel R (2012). Overview of GOCE+ studies. 1st
International GOCE Solid Earth Workshop, Enschede, October 2012.
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8. van der Wal, Root B, Novák P, Vermeersen B (2012). Interpreting gravity data from
GRACE and GOCE in Scandinavia and Iceland. 1st International GOCE Solid Earth
Workshop, Enschede, October 2012.

9. Root B, Novák P, van der Wal W, Vermeersen B (2012). Interpreting gravity anoma-
lies in Northwestern Europe, crustal thickening or GIA? 1st International GOCE Solid
Earth Workshop, Enschede, October 2012.

10. Root B, Novák P, Stolk W, van der Wal W, Vermeersen LLA (2013). Sensitivity analysis
of a forward model of the gravity field in Fennoscandia. 10th EGU General Assembly
2013, Vienna, April 2013.

11. Sebera J, Novák P, Val’ko M, Šprlák M, Bezděk A, Bouman J, Fuchs M (2013). Down-
ward continuation of gridded and reprocessed GOCE gravitational gradients. 10th
EGU General Assembly 2013, Vienna, April 2013.

12. Šprlák M, Novák P, Val’ko M, Sebera J (2013). Spherical integral formulas for up-
ward/downward continuation of gravitational gradients onto gravitational gradients.
8th Hotine-Marussi Symposium, Rome, June 2013.

13. Novák P, Sebera J, Šprlák M, Val’ko M, Haagmans R (2013). Downward continuation
and prediction of GOCE gravitational gradients. IAG Scientific Assembly 2013, Pots-
dam, September 2013.

14. Novák P, Sebera S, Baur O, Martinec Z, Sneeuw N, Tsoulis D, Vermeersen B, van der
Wal W, Roth M, Sebera J, Val’ko M, Haagmans R (2013). Towards a better understand-
ing of the Earth’s interior and geophysical exploration research. ESA Living Planet
Symposium, Edinburgh, September 2013.

15. Martinec Z, Vermerseen B, van der Wal W, Novák P, Sebera J, Baur O, Tsoulis D,
Sneeuw N, Haagmans R (2013). GOCE gravitational gradients in regional geophys-
ical studies. ESA Living Planet Symposium, Edinburgh, September 2013.

16. Šprlák M, Novák P, Val’ko M, Sebera J (2013). Comparison of three methods for the
downward continuation of the gravitational gradients. ESA Living Planet Sympo-
sium, Edinburgh, September 2013.

17. Root B, van der Wal W, Novák P, Gradmann S, Vermeersen B (2013). Glacial Isostatic
Adjustment in the static gravity field of Fennoscandia. AGU Fall Meeting 2013, San
Francisco, December 2013.

18. Novák P, Sebera J, Šprlák M, Val’ko M (2013). Downward continuation, validation
and combination of GOCE gravitational gradients for geophysical modeling. AGU
Fall Meeting 2013, San Francisco, December 2013.

Further outcomes of the project include peer-reviewed publications which are currently
submitted to geodetic or geophysical journals. To date they include:

1. Martinec Z (2013). Mass-density Green’s functions for satellite gradiometric data. Geo-
physical Journal International (under preparation).
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2. Martinec Z, Fullea J (2013). A refined model of sedimentary rock cover in the south-
eastern part of the Congo basin from GOCE gravity and vertical gravity gradient ob-
servations. Int. J. Appl. Earth Observation and Geoinformation (under review).

3. Novák P, Tenzer R (2013). Gravitational gradients at satellite altitudes in global geo-
physical studies. Surveys in Geophysics (accepted).

4. Sebera J, Šprlák M, Novák P, Val’ko M, Bezděk A (2013). Application of the iterative
spherical downward continuation to gridded satellite data. Surveys in Geophysics (sub-
mitted).

5. Šprlák M, Sebera J, Val’ko M, Novák P (2013). Integral formulas for upward/downward
continuation of gravitational gradients onto gravitational gradients. Journal of Geodesy
(submitted).

6. Šprlák M, Novák P (2013). Integral transformations of gradiometric data onto GRACE
type of observable. Journal of Geodesy (submitted).
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2 GOCE data pre-processing (WP2 and WP3)

2.1 Combination of GOCE and GRACE gravitational gradients in
the spectral domain

The final gravitational gradients (GGs) used for the geophysical studies within the project
were taken from the output of the GOCE+ GeoExplore project (Consortium 1); this data
became available in early 2013. For this reason, within the GOCE-GDC project a prelimi-
nary 2-month data set was generated (covering the period of November-December 2009).
The preliminary data set served as input for the development/adaption of the geophysical
models. Later, the preliminary GGs were replaced by the GGs from Consortium 1. The
following subsections describe generation and characteristics of the preliminary data; the
adopted methods are in accordance with the strategies used by Consortium 1.

2.1.1 GRACE-only gravitational gradients

GRACE GGs were derived from two state-of-the-art GRACE-only static global gravitational
models, namely ITG-Grace2010s (Mayer-Gürr et al., 2010) and AIUB-GRACE03S (Jaeggi
et al., 2011). The synthesis was performed along the GOCE tracks over the period of 1
November 2009 to 31 December 2009. With regard to combined GRACE/GOCE GGs, we
evaluated the GRACE GGs at the epochs of GOCE GG measurements. For this purpose, the
original GOCE kinematic orbit (SST_PKI_2 product) was interpolated on the time points
of the GOCE GG measurements (taken from the EGG_NOM_2 product). Exemplary for all
of the six GGs, Figure 2.1 shows the absolute Vxx component derived from both the ITG-
Grace2010s model and the AIUB-GRACE03S model, as well as the difference in Vxx. The
differences are below 2 mE. Hence, the GG synthesis is insensitive to the underlying GRACE
model; for the project purpose we decided to use ITG-Grace2010s.

The rotation of the synthesized GRACE GGs from LNOF to GRF was done by three suc-
cessive rotations, namely from (i) LNOF to the Earth Fixed Reference Frame (EFRF), (ii)
EFRF to IRF, and (iii) IRF to GRF.

11
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Figure 2.1: Vxx in LNOF for 1 November 2009 computed from GRACE-only static global
gravitational models up to the degree and order 160.

2.1.2 Reference frame rotations

(i) EFRF to LNOF

The rotation is a function of geocentric spherical latitude ϕ and East longitude λ; the rotation
matrix becomes (Gruber et al., 2008, Sect. 4.4.1):

REFRF
LNOF =

− sinϕ cosλ − sinϕ sinλ cosϕ

sinλ − cosϕ 0

cosϕ cosλ cosϕ sinλ sinϕ

 . (2.1)

The geocentric spherical coordinates (r, ϕ, λ) relate to the geocentric Cartesian coordinates
in EFRF according to

X = r cosϕ cosλ ,

Y = r cosϕ sinλ ,

Z = r sinϕ .

(ii) EFRF to IRF

The rotation into the Inertial Reference Frame (IRF) is provided in terms of quaternions
within the SST_PRM_2 product. The quaternions were interpolated on the time stamps of
the GOCE GG measurements (taken from the EGG_NOM_2 product) according to Gruber
et al. (2008, Sect. 4.4.2.2). The rotation matrix reads

REFRF
IRF = REFRF

IRF (qint
4 , qint

3 , qint
2 , qint

1 ) . (2.2)
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(iii) IRF to GRF

This rotation is provided in terms of quaternions within the EGG_NOM_2 product. These
quaternions do not need to be interpolated as they hold at the epochs of observed GOCE
GGs. The rotation matrix is denoted as

RIRF
GRF = RIRF

GRF (q4, q3, q2, q1) . (2.3)

The total rotation from LNOF to GRF, hence, becomes

RLNOF
GRF = RIRF

GRF REFRF
IRF

(
REFRF

LNOF

)T
. (2.4)

Accordingly, the rotation from GRF to LNOF is

RLNOF
GRF =

(
RLNOF

GRF

)T
. (2.5)

Translations were not accounted for, i.e., the origin of any reference system coincides with
the spacecraft position (SST_PKI_2 product, interpolated on time stamps of GOCE GG
measurements) at the epochs of the measured GOCE GGs. An example of GRACE GGs is
shown in Fig. 2.2.

Figure 2.2: GRACE GGs in GRF for 1 November 2009.

2.1.3 Combined GRACE/GOCE gravitational gradients

The combined GRACE/GOCE GGs result from the combination of the measured GOCE
GGs (EGG_NOM_2 product) and the GRACE GGs. The combination is done in GRF by
adding low-pass filtered GRACE GGs and high-pass filtered GOCE GGs. Prior to the fil-
tering procedure, the less accurate Vxy and Vyz GOCE GGs, see Fig. 2.3, have been replaced
by model GGs based on the GO_CONS_GCF_2_TIM_R3 model (Pail et al., 2011), i.e., the
state-of-the-art GOCE-only global gravitational model.
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Figure 2.3: The square root of PSD of the gradiometer noise (Pail et al., 2011). Compared to
the other GGs, the Vxy and Vyz components are less accurate by the factor of about 100.

For the GG combination we followed the procedure by Bouman et al. (2011), using a
second-order Butterworth filter. The low-pass/high-pass cut-off frequency is chosen such
that within the effective gradiometer MBW the signal of the combined GGs reflects the sig-
nal contained in the measured GOCE GGs. In particular, we followed the philosophy by
Fuchs and Bouman (2011) to ”maximize the information delivered by GOCE, that is, to de-
termine the effective MBW, where the gradient errors are minimal and behave ideally as
white noise”. Fuchs and Bouman (2011) conducted numerous studies on the choice of the
”optimal” cut-off frequency; they found it to be in the range of 3-4 mHz. We adopted the
value of 4 mHz. Consequently, we modelled the very long-wavelength spectrum up to the
spherical harmonic degree of≈ 20 by forward-evaluated GRACE GGs. As a side remark, we
would like to emphasize that a particular spherical harmonic degree along the orbit cannot
exactly be related to a particular signal frequency (lumped relation). However, this concern
is of secondary importance for computation of preliminary (quick and dirty) combined GGs.

Figure 2.4 shows both the GRACE GGs and the measured GOCE GGs. The GGs differ
due to their different spectral content; whereas the GRACE GGs include long-wavelength
features, this information is partly missing in the GOCE GGs. Figure 2.5 displays PSDs of
GRACE-GOCE GG differences; PSDs are an indicator for the gradiometer noise (cf. Fig. 2.3).

The low-pass filtered GRACE GGs and the high-pass filtered GOCE GGs (Vxy and Vyz re-
placed) are presented in Figs. 2.6 and 2.7; their combination is then in Fig. 2.8. Note that the
GRACE GGs are smoother than the combined GOCE/GRACE GGs as the GRACE gravita-
tional information is limited (here) to the spherical harmonic degree 160. Figure 2.9 shows
PSDs of the GRACE – GRACE/GOCE GG differences. The comparison with Fig. 2.5 reveals
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Figure 2.4: GRACE GGs (blue) and GOCE GGs (red) in GRF for 1 November 2009.

Figure 2.5: PSDs of the GRACE-GOCE GG differences.

that the errors in the long wavelength part of the spectrum vanished, whereas the signal in
the MBW is preserved.

2.1.4 Validation of the preliminary gradients

We validated our combination/replacement procedure with forward-evaluated GGs based
on the GOCO01S global gravitational model (Pail et al., 2010). As GOCO01S contains both
GOCE and GRACE information, the differences between our combined GRACE/GOCE
GGs and the synthetic GOCO01S GGs should only be subject to different ”data weight-
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Figure 2.6: Low-pass filtered GRACE GGs in GRF for 1 November 2009.

Figure 2.7: High-pass filtered GOCE GGs (Vxy and Vyz replaced) in GRF for 1 November
2009.

ing”. As shown in Fig. 2.10, in terms of spherical harmonic coefficients GRACE is superior
to GOCE up to the degree of about 140. As a consequence, the spectral components of the
GOCO01S GGs below the degree 140 are dominated by GRACE. In contrast, our combined
GGs contain GRACE information only up to the degree of about 20. As these differences in
”data weighting” show up in Figs. 2.11 and 2.12, we repeated the computations with com-
bined GRACE/GOCE GGs containing GRACE information up to the degree 140 (cut-off
frequency 28 mHz). In the time domain (Fig. 2.11 vs. Fig. 2.13), the choice of the cut-off fre-
quency has only a minor impact. In the frequency domain (Fig. 2.12 vs. Fig. 2.14) it turns out
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Figure 2.8: Combined GRACE/GOCE GGs (solid green) and GRACE GGs (dashed blue) for
1 November 2009.

Figure 2.9: PSDs of GRACE-GRACE/GOCE GG differences.

that the higher the cut-off frequency the more the signal in the MBW is affected by GRACE.
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Figure 2.10: Degree error medians for different gravitational models (Pail et al., 2010).

Figure 2.11: Differences between GOCO01S GGs and combined GRACE/GOCE GGs (cut-
off frequency 4 mHz) for 1 November 2009.



2.1 Combination of GOCE and GRACE gravitational gradients in the spectral domain 19

Figure 2.12: PSDs of GOCO-GRACE/GOCE GG differences (cut-off frequency 4 mHz) for 1
November 2009.

Figure 2.13: Differences between GOCO01S GGs and combined GRACE/GOCE GGs (cut-
off frequency 28 mHz) for 1 November 2009.
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Figure 2.14: PSDs of GOCO-GRACE/GOCE GG differences (cut-off frequency 28 mHz).
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2.2 Validation of gravitational gradients provided by Consortium 1

The validation was performed in terms of ”reproduction” of the GeoExplore GGs according
to the conceptual line of action applied by the GeoExplore project. For the sake of simplicity,
in the following the GG from the GeoExplore project are referred to as ”DGFI GGs”, whereas
the ”reproduced” gradients from the GOCE-GDC are denoted as ”IWF GGs”. Software
synchronization has not been envisaged at any stage of the validation process, i.e., the DGFI
GGs and IWF GGs can be considered as two independent products. On the other hand,
(slight) differences in processing significantly impact the results; hence it cannot be expected
that the DGFI GGs and IWF GGs perfectly match each other. All results shown in this report
are based on data from the period of April 2010 (30 days). Table 2.1 summarizes the GG
combination strategy for the computation of both preliminary GGs (for the GOCE-GDC
internal use only, cf. Sect. 2.1) and IWF GGs.

Table 2.1: GG combination strategy

Preliminary GGs IWF GGs
GOCE data (EGG_NOM_2) original GGs reprocessed GGs
Frame GRF GRF
Long-wavelength part ITG-Grace2010s GOCO03S
Filter 2nd order Butterworth 4th order Butterworth
Cut-off/cut-on frequency 4 mHz (d/o ∼20) 5 mHz (d/o ∼25)
V xy and V yz handling replaced (TIM-R3) none
Combined LNOF GGs combined GRF GG rotation V xy and V yz replaced prior to rotation

2.2.1 Validation of gravitational gradients in GRF

Without any consideration of the flag information differences are up to a few Eötvös, see
Figs. 2.15 and 2.16. With consideration of the DGFI flag information (elimination of data
flagged with values larger than 2), the differences reduce to the level of mE, see Fig. 2.17.
The differences are expected to occur due to slightly different data combination strategies
(filtering): whereas DGFI interpolates outliers prior to filtering in order to mitigate strong
oscillation effects, IWF does not apply any (Spline) interpolation. Using the extended flag
information (100 samples before and after each GG flagged with values larger than 2 omit-
ted), the differences reduce to the sub-mE level (not shown here).

The GOCO03S global gravitational model has been used to cover the long-wavelength
part of the combined GGs, cf. Table 2.1. Furthermore, according to the combination strategy
(cut-on/cut-off frequency of 5 mHz), the signal of the combined GGs reflects the signal
contained in the measured GOCE GGs within the MBW of 5 mHz to 0.1 Hz. Therefore, PSDs
of the differences between the combined GGs and synthetic GOCO03S GGs should show no
significant signal below the cut-off/cut-on frequency of 5 mHz, see Fig. 2.18. Note that the
combined GRF GG Vxy and Vyz have not been replaced by model gradients. For this reason,
the higher PSD differences for Vxy and Vyz (compared to the other GGs) in Fig. 2.18 can be
attributed to the higher noise level of the combined GGs.
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Figure 2.15: DGFI-IWF differences of combined GGs (GRF) – flag information is not consid-
ered.

2.2.2 Validation of gravitational gradients in LNOF

Again, without any consideration of the flag information the differences are up to a few
Eötvös, whereas with consideration of the extended flag information the differences reduce
to the sub-mE level (not shown here).

The GOCO03S global gravitational model has been used to cover the long-wavelength
part of the combined GGs, cf. Table 2.1. Furthermore, according to the combination strategy
(cut-on/cut-off frequency of 5 mHz), the signal of the combined GGs reflects the signal
contained in the measured GOCE GGs within the MBW of 5 mHz to 0.1 Hz. Therefore, PSDs
of the differences between the combined GGs and synthetic GOCO03S GGs should show no
significant signal below the cut-off/cut-on frequency of 5 mHz, see Fig. 2.19.

2.2.3 Validation summary

The role of the Austrian Academy of Sciences (AAS) within the project was twofold. First,
AAS was responsible for the computation and delivery of the preliminary gravitational gra-
dients. These GGs were used by the geophysicists to derive suitable procedures and al-
gorithms for the geophysical exploration of the two study areas. During the course of the
project (in November 2012), the preliminary gradients were replaced by GGs computed by
the GeoExplore project (final GGs). Against this background, the second task performed by
AAS was the validation of these final gradients.
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Figure 2.16: DGFI GGs vs. IWF GGs (GRF), zoom – flag information is not considered.

Figure 2.17: DGFI-IWF differences of combined GGs (GRF) – flag information is considered.
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Figure 2.18: PSDs of combined GG-GOCO03S GG differences (GRF). The dashed red lines
indicate the lower and upper bound of the GOCE MBW of 5 mHz and 0.1 Hz, respectively.

Figure 2.19: PSD of combined GGs – GOCO03S GG differences (LNOF). The dashed red lines
indicate the lower and upper bound of the GOCE MBW of 5 mHz and 0.1 Hz, respectively.
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2.3 Continuation of GRACE/GOCE gravitational gradients to a mean
orbital sphere

With GGs along the real orbit in LNOF available (provided by Consortium 1), it is conve-
nient to continue them to a spherical surface of a constant distance from the origin of the
global coordinate system EFRF. This operation has a beneficial effect on geophysical inter-
pretation of satellite gravitational gradients as the gradient data refer to the same height
(measured in terms of a geocentric radius). In addition, a regular spherical surface is espe-
cially suitable for effective surface integration when continuing the gradient data globally
by means of a convolution integral. From all data point radii we have chosen their average
to be the radius of the reference geocentric sphere. This sphere is from now on called the
mean orbital sphere (MOS).

For the given period of 2009/11/01 – 2012/12/06 and 68,643,443 data points the real orbit
varies within 32 km, for which the radius of MOS is equal to rMOS = 6637618.471 m. Hence,
the maximum height difference in the continuation is about 16 km.

The upward/downward continuation from the real orbit to MOS employs a gradient ap-
proach which is based on linear approximation of the Taylor expansion

Vij |MOS = Vij |real orbit + ∆h
dVij
dr

, (2.6)

where ∆h is the height (geocentric) difference and dVij
dr is the radial derivative of the partic-

ular gravitational gradient.
Generally, there are two ways for computing dVij

dr using a global gravitational model. First,
one can directly calculate (synthesize) the radial derivative by the spherical harmonic syn-
thesis (SHS), i.e., dVij

dr =
∂Vij
∂r . In this case, SHS can be computed only once but an analytic

formula must be known and coded. Instead, one can make SHS for more points along the
reference line V p

ij and calculate dVij
dr numerically. Both methods have their pros (+) and cons

(-):

1) Analytic ∂Vij
∂r :

+ Speed – only one SHS will always be faster than multiple SHSs.

- Control – with a one point derivative there are no redundant values of Vij for
checking a nominal accuracy of the algorithm.

- Coding – more programming of ∂Vij
∂r is needed. In addition, when computing in

any other reference frame than LNOF, a complete tensor of the third order Vijk
must be computed first and then rotated to the same convention.

2) Numerical dVij
dr :

- Speed – slower then the first option by a factor equal to the number of points in
the numerical derivative. This weakness can partially be treated by employing
parallel processing.

+ Control – data from the global gravitational model can also be continued; thus, a
nominal accuracy of the algorithm can easily be determined.
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+ Coding – only little programming is needed, SHS for Vij is simply repeated before
Eq. (2.8) is applied.

2.3.1 Computing radial derivatives of gravitational gradients

In the present study, we have chosen the option of numerical computation of the radial
derivative dVij

dr , whereas it is computed with the GOCE-only global gravitational model TIM-
r3 up to the degree and order 250. For numerical differentiation a five-point stencil was
chosen. Its use is an acceptable trade-off between speed of the continuation and its nominal
accuracy which is described below.

The differentiation scheme is given in agreement with Fig. 2.20 with the coefficients de-
fined as follows:

C5 =
(

1
12 −2

3 0 2
3 − 1

12

)
, (2.7)

with which the radial derivative can be computed as

dVij
dr

=
(
V 1
ij V 2

ij V 3
ij V 4

ij V 5
ij

)
CT

5 , (2.8)

where the superscript just denotes the order of the five input points. The individual V p
ij are

computed by SHS along the norm to the reference sphere of rreal orbit; i.e., we apply geo-
centric mapping (upward/downward) between the two green points in Fig. 2.20. Note that
according to Fig. 2.20 the nominal accuracy must vary with ∆r as the numerical derivative
computed at the red point will better represent the function’s neighborhood (in the geocen-
tric direction) for smaller ∆r.

The practical computations of V p
ij along the geocentric norm is done by means of Hotine’s

equations for the second Cartesian derivatives of the gravitational potential (Hotine, 1969,
pp. 180-183):

V EFF
ij (r, θ, λ) =

GM

R3

∞∑
n=0

n+2∑
m=0

(
R

r

)n+3 (
C̄ijn+2,m cosmλ+ S̄ijn+2,m sinmλ

)
P̄n+2,m(cos θ) ,

(2.9)
where C̄ijn+2,m and S̄ijn+2,m are the so-called Hotine harmonics that are linear combinations
of the ordinary geopotential coefficients. The maximum degree and order of Hotine’s har-
monics increased to (n+ 2) that originates in Hotine’s algebra. The shift in degree and order
is a key feature of Hotine’s equations and ordinary geopotential coefficients with m > n are
zero by definition. The detailed definition of Hotine’s coefficients is given in Appendix A.1;
see also Cunningham (1970); Bettadpur (1995); Petrovskaya and Vershkov (2009, 2012). The
advantage of Hotine’s formalism is that it needs no derivatives of the associated Legendre
functions that accelerates work with Cartesian derivatives of the gravitational potential.

2.3.2 Nominal accuracy of the radial derivative

Once the tensor is simulated at all points along the real orbit as well as on MOS according to
Fig. 2.20, one can easily control how the radial derivative fits the data from the model. This
is called the nominal accuracy εnom which is directly related to validity of the numerical
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Figure 2.20: Scheme of continuation of GGs from the real orbit to MOS with the 5-point sten-
cil. The green points highlight the input and the target points while the red point denotes
location where the numerical derivative is computed.

derivative in its neighborhood. Along with Eq. (2.6) we have

εnom = V model
ij

∣∣∣
MOS

−

(
V model
ij

∣∣∣
real orbit

+ ∆r
dV model

ij

dr

)
. (2.10)

The sample evaluation of the nominal accuracy is shown in Figure 2.21 where we can see
that extreme values of the differences between TIM-r3 and its values continued with the
numerical derivative are at the sub-mE level or better. In addition, the strong dependence
of Eq. (2.8) on the value of ∆r is visible. The smaller ∆r the higher accuracy can be obtained
with the gradient continuation. The corresponding numbers for this epoch and all other
epochs are provided in Appendix A.2, see Table A.1, where RMS(εnom) values are listed.

The minimal nominal accuracy in Table A.1 is at the level of 0.1 mE (with RMS of 0.01 mE),
which is one order of magnitude less than the estimated accuracy of the GOCE gradients
given by Bouman and Fuchs (2012). Thus, the continuation of GRACE/GOCE gravitational
gradients to MOS does not decrease their accuracy. This is also shown in the next section
when comparing GRACE/GOCE gradients with global gravitational models.

An example of how much the signal varies during the continuation to the MOS over the
Study area A is shown in Fig. 2.22. It is important to note that the full GGs – Vij – were
continued but only its disturbing values Tij with the GRS80 signal subtracted are shown
in Fig. 2.22. However, variations in Tij over the distance ∆r reach more than 10 mE for
the diagonal components Txx and Tzz . Despite the value of ∆r is different for each point,
Fig. 2.22 also implies that any available global gravitational model is more suitable for com-
puting dVij

dr at the GOCE altitude than any simpler gravitational field approximation like the
GRS80.

2.3.3 Consistency of continued gradients with TIM-r3

In the previous section, it was shown that the nominal accuracy of the gradient continuation
to MOS is at the sub-mE level when applying it to the synthetic data from TIM-r3. This
scenario satisfies the so-called closed-loop test of a particular algorithm as we compare the
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Figure 2.21: Nominal accuracy for the period of 2009/11/01 – 2009/11/30; see Table A.1.

Figure 2.22: Radial derivatives for the Study area A in terms of the disturbing gravitational
gradients (GRS80 signal subtracted) along the orbit (E). Note it is a scattered plot where
individual points may overlay each others.
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results with another data coming from the same source (TIM-r3). In order to look at the
real data one can compute differences between real GRACE/GOCE data and the gradient
data computed from a global gravitational model. With such a metric we cannot quantify
the accuracy of real data (both sources of data are based on different methodologies, data
spans, etc.), but their consistency can only be tested. Thus, we will compare GRACE/GOCE
gradients with TIM-r3 before and after their continuation to MOS. Note that we do not need
to search for an optimal maximum degree of TIM-r3 as the effect from cut-off is negligible
at satellite altitudes.

In Table A.2 the differences between real GRACE/GOCE GGs and TIM-r3 up to the de-
gree and order 250 are shown. The comparison is performed in terms of the differences
between maximal values at both heights according to

dmax = max(V GOCE
ij − V TIM−r3

ij )
∣∣∣
MOS

− max(V GOCE
ij − V TIM−r3

ij )
∣∣∣
real orbit

. (2.11)

This quantity tells us how the consistency of the GRACE/GOCE data and the TIM-r3 model
has changed during the upward/downward continuation. Using maximum values gives
the ”supremum” of the consistency for a given epoch. From Table A.2 it is obvious that the
maximum from all maximal values is about 0.07 mE for 2010. Nevertheless, this result still
guarantees that the continuation procedure produces physically reliable results that do not
affect the relative accuracy of the GRACE/GOCE gradients.

2.3.4 Gradient spectra along the real orbit and on the mean orbital sphere

A detailed inspection of what the downward/upward continuation of gravitational gradi-
ents to MOS has brought can emerge by applying spectrum estimators to the data sets before
and after their continuation. We can take an advantage of the time series representation that
is preserved for both data sets. Using spectrum estimators then allows to determine energies
distributed over individual frequencies. This is usually done in terms of the power spectral
density (PSD) or its square root which is called herein the linear spectral density (LSD).

Comparing LSDs (PSDs) for two time series of the gradient data, while each of them refers
to a different altitude, must be done with care. The signal Vij is during the continuation at-
tenuated (going upward) or amplified (going downward). This means that the total energy
in the spectrum before and after the continuation must differ. Thus, not the magnitude of
LSD but the shape of the curve is a more appropriate indicator when comparing such two
time series. The shapes of two curves can easily be compared in terms of their correlation.
An example for the first epoch of our data is given by Fig. 2.23 where r denotes the correla-
tion coefficient of the two time series. It is evident that LSD is nearly the same for all gravi-
tational gradients with r being very close to its maximum r = 1. This simply indicates that
no fundamental changes in the spectrum of GRACE/GOCE data were introduced by UDC
to MOS. In other words, UDC does not affect spectral characteristics of GRACE/GOCE data
significantly. Hence, we assume that the signal does not redistribute over the frequencies in
an inappropriate way and the uniqueness of GRACE/GOCE data is preserved.

The plots with the same indications for a few sample epochs are provided in Appendix
A.4. It is important to note that outliers were not removed from the data before computing
spectra for the correlation purposes. Nevertheless, this is acceptable because the best and



30 2 GOCE data pre-processing (WP2 and WP3)

Figure 2.23: LSDs for Vij before (in blue) and after (in green) UDC to MOS for the epoch
2009/11/01 – 2009/11/30. The correlation of LSDs is indicated by r in each panel.

physically relevant LSD estimate is not needed if we are focused on such a relative quantity.
Continuing an outlier from the first time series will yield an outlier in the second series but
the biased series can still be satisfactory correlated. The correlation coefficients for all epochs
in Appendix A.4 reach very high values of r > 0.97.

2.4 Gridding GRACE/GOCE gradients on the mean orbital sphere

For geophysical applications of gravitational gradients as well as for their global downward
continuation, it is more suitable to work with gridded data. There is a number of algo-
rithms available for gridding irregularly distributed data. We have adopted the solution
called gridfit (D’Errico, 2006) which is a function written in the MatLab language. This
function was designed for applications in image processing. We have used gridfit for
interpolation from the along-track representation on MOS to regular grids on the same sur-
face. The obvious advantage of the previous UDC to MOS is that we can consider only two
angular coordinates, i.e., geocentric latitude and longitude.

2.4.1 Note on the algorithm gridfit

The gridfit function is according to D’Errico (2006) an ”approximant” as opposite to an
”interpolant” that must reproduce given data. Its governing equation is simply a function
of two variables

f = z(x, y) , (2.12)

that is first transformed into a matrix form

y = A x (2.13)
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Figure 2.24: Differences of 30, 15 and 10 arc-min grids from Gridfit (from left to right) and
the TIM-r3 model. The RMS values are 2.84, 2.87 and 4.73 mE, respectively.

and consequently solved with help from the least squares (LS), while the following system
of equations

B x = o (2.14)

constrains the solution by the additional settings. The corresponding cost function is given
as follows (D’Errico, 2006):

||Ax− y||2 + λ ||B x|| = min . (2.15)

The default settings of the function f are:

• ”smoothness” – sets a relative smoothing in LS. The default value is 1 but we have
used 0.003 in order to keep smoothing as low as possible.

• ”interp” – sets the interpolation method. Default is ”triangle, we have used ”bilinear”
although both provide very consistent results.

• ”regularizator” – sets the regularization method. Default is ”gradient”, we have used
”diffusion”.

• ”tilesize” – sets the maximum dimension of the system of linear equations. We have
used 200 but its choice did not affect the results significantly since Gridfit applied
overlaps in order to reduce edge effects from tiling.

From the overview of the basic Gridfit settings, we consider ”smoothness” to be the
most important parameter when handling the GRACE/GOCE gradient data. The other
parameters either provide consistent results or they belong to standard settings in the in-
terpolation theory. Therefore, we focus on smoothing when applying Gridfit in the next
sections.

2.4.2 Choice of the grid resolution

Having the gradient data on the mean orbital sphere, we can work with the most simple
latitude/longitude projection, i.e., x = ϕ, y = λ and z = Vij . This is an absolutely rigorous
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approach on the plane but on the sphere one can expect some distortions because the data
are not optimally weighted while interpolating. In other words, one can expect smoothing
in the areas of local extremes due to interpolation of Vij(x, y). Then, the most straightfor-
ward way to reduce such effects is to increase the spatial resolution of the data as distances
between the input and output points are decreasing. On the other hand, a natural limitation
for the choice of higher spatial resolutions is a number of observation points available.

In Figure 2.24 we investigate the role of varying grid resolutions on signal smoothing
when using Gridfit. Note that the smoothing effect based the data resolution is different
from that controlled by the smoothing parameter (fixed to 0.003 for the whole Fig. 2.24) as
described above. In Figure 2.24 the GRACE/GOCE gravitational gradients on MOS were
interpolated with Gridfit onto regular 10, 15 and 30 arc-min grids at the same height;
the resulting gridded values were compared with gradients synthesized from the TIM-r3
model. Figure 2.24 displays resulting differences and RMS values for each particular reso-
lution. For the 30 and 15 arc-min grids there is obvious smoothing over local extremes (e.g.,
over the Himalayas) that is likely caused by a planar distortion in these relatively sparse
grids. This smoothing is not seen in the 10 arc-min grid where the differences look rather
random. Hence, the 10 arc-min resolution seems to be more satisfactory for representing
GRACE/GOCE data on MOS. Note that the RMS values slightly increased but the system-
atic smoothing in the interpolation was reduced for this grid.

The cut extremes in Fig. 2.24 must truly come from the gridding algorithm, otherwise the
signal over local extremes (e.g., over the Himalayas) would have to be identified already in
the differences along the orbit. This is not true as GOCE-based global gravitational mod-
els like TIM-r3 very well represent GRACE/GOCE gradient data without introducing any
new signal over areas like the Himalayas. The smoothing effect for each resolution is also
expressed by the RMS values displayed in each panel in Fig. 2.24. For the 30 and 15 arc-min
grids the RMS value is slightly smaller than for the 10 arc-min grid, which is likely caused
by both a denser resolution (less smoothing) and a smaller proportion of the input/output
points for the 10 arc-min grid.

Despite the systematic smoothing from interpolation can be reduced by using higher res-
olutions, some loss of the signal and smoothing will always be present; these two effect
cannot be excluded absolutely. The only way to avoid this effect would be measuring gra-
dient data on regular grids which is of course not possible.

2.4.3 Selection of the smoothing parameter

A possibility to smooth a signal, while interpolating might or might not be useful, usually
depends on the purpose of the operation (reduce the noise vs. protect the signal). In the
present project, we try to suppress smoothing to the sub-mE level as the valuable signal
can occupy high frequencies and/or reach only low magnitudes. The Gridfit function
controls the effect from smoothing directly by the ”smoothing” parameter. As stated above,
smoothing can be controlled via the matrix B in Eq. (2.15); the matrix has nothing to do with
systematic smoothing caused by the choice of the grid resolution.

In Figure 2.25 the differences between TIM-r3 up to its maximum degree and the grav-
itational gradients interpolated on the 10 arc-min grid are displayed. In each panel’s title
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Figure 2.25: Differences between TIM-r3 (up to its maximum degree) and GRACE/GOCE
gravitational gradients on the 10 arc-min grid with smoothness of 0.03.

Figure 2.26: Differences between TIM-r3 (up to its maximum degree) and GRACE/GOCE
gravitational gradients on the 10 arc-min grid with smoothness of 0.003.
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Figure 2.27: Differences between TIM-r3 (up to its maximum degree) and GRACE/GOCE
gravitational gradients on the 10 arc-min grid with smoothness of 0.0003.

the corresponding RMS value is shown. For smoothing we have used 0.03, whereas the de-
fault value in Gridfit is equal to 1; thus, the smoothing is almost switched off. Generally,
the RMS values of a few mE for all components indicate that the gradient data on MOS are
very close to the TIM-r3 model, or vice versa, that the TIM-r3 model very well represents
the GRACE/GOCE data at this altitude. A significantly smaller RMS value is seen for Vxy
and Vyz than for the other gradients that is caused by the physical nature of these compo-
nents. As we already work in LNOF (TRF), the real components Vxy and Vyz from GOCE
were replaced by the simulated gradients from the gravitational model before the tensor
was rotated to LNOF; see Section 2.1. Thus, the rotation of our data sets from GRF into
LNOF preserved, to a certain extent, the natural difference between the real and the simu-
lated gradients. On the other hand, the model signal content of any rotated gravitational
gradient always depends on settings of the filtering in GRF and on the value of rotation an-
gles. Thus, the model content varies with the component and the target reference frame; for
more details and some examples, see Fuchs and Bouman (2011).

In Figures 2.26 and 2.27 we provide the same evaluation as in Fig. 2.25. The RMS values
from all these figures indicate that by decreasing the smoothing parameter from 0.03 to 0.003
we can introduce errors at the 1 mE level (e.g., for Txx we have 2.672 → 3.318 mE), while
comparing 0.003 with 0.0003 yields the differences at the 0.01 mE level (e.g., for Txx we
have 3.318 → 3.329). Since this effect holds for all the gradients at the 10 arc-deg grid, the
smoothing parameter 0.003 seems to be satisfactory.

2.5 Output summary

In this chapter, we have started with GOCE gravitational gradients along the real orbit in
GRF. These data were first spectrally filled in with the GRACE model out of MBW and
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then rotated into LNOF. For the rotation, the two less-accurate components were replaced
from the gravitational model. These data were subsequently continued to the mean orbital
sphere, still in a time series representation. The along-track data were gridded on MOS to
provide the input for next applications. At this stage, the following data sets were produced:

• GRACE/GOCE gravitational gradients along the real orbit in GRF,

• GRACE/GOCE gravitational gradients along the real orbit in LNOF,

• GRACE/GOCE gravitational gradients along the mean orbital sphere in LNOF,

• numerical derivative dVij
dr according to Fig. 2.20,

• and gridded Txx, Txz, Tyy and Tzz in LNOF on the 10 arc-min grid at MOS.
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3 Downward continuation of gradient data (WP3)

3.1 Introduction

In geodesy and geophysics, the upward and downward continuation (UDC) is a common
tool for processing various potential data. Its basic motivation comes from the fact that data
are usually acquired in some distance from source masses (e.g., at the Earth’s surface, in
aircraft or satellites) that makes the observed signal attenuated and smoothed. The down-
ward continuation (DC) both amplifies the magnitude of the signal and improves its spatial
resolution that is useful for studying source masses or their dynamic properties.

There has been a lot of methods for UDC already developed. They operate in either
space or spectral domains; for an overview of some existing strategies, see (Pick et al., 1973;
Huestis and Parker, 1979; Phillips, 1996; Novák et al., 2001; Fedi and Florio, 2002). Ne-
glecting all necessary corrections applied to raw observations (instrumental, environmen-
tal, methodological, etc.), the most widely used numerical approach for UDC is based on
the 2-D Fourier transform (Parker, 1973; Oldenburg, 1974). For this approach, the data must
be given on a regular coordinate grid in the plane. Applying the Fourier transform to dis-
crete data and to values of kernel functions separately yields spectral coefficients that can
be multiplied together, while the continued signal is given as the inverse Fourier transform
of the product. For the planar approximation we usually know the analytic Fourier image
of the kernel function which also saves the execution time. On the other hand, any planar
approach is especially appropriate for local studies where the data can be reduced to a refer-
ence plane (Parker, 1973). However, this is not the case for satellite data distributed globally
several hundreds kilometres above the Earth’s surface (approximately 200 km in case of the
GOCE spacecraft).

In this report, we extend and apply the iterative DC approach to the second-order Carte-
sian derivatives of the gravitational potential which are given on the sphere. This approach
is suitable for dealing with gridded data from recent gravity-dedicated satellite missions like
GRACE (Tapley et al., 2004) and GOCE (ESA, 1999) or from magnetic satellite missions like
CHAMP (Reigber et al., 2002), Ørsted (Neubert et al., 2001) and Swarm (Friis-Christensen
et al., 2006). As all these satellites have near-circular orbits, their global data sets are dis-
tributed on near-spherical surfaces. Hence, after reducing observed data to the mean orbital
sphere, the spherical DC can complement/substitute any intermediate basis functions like
the spherical harmonics when handling potential data in mass-free space. In addition, an
iterative algorithm based on the Poisson integral equation can easily be used for removing
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(or estimating) a great deal of the observation noise without any a priori information.

We combined two strategies for the downward continuation of gridded GRACE/GOCE
gravitational gradients. First, the overall scheme of the algorithm is based on an iterative
procedure suggested in Landweber (1951) to solve the Fredholm equation of the first kind.
Secondly, discrete integration on the sphere is technically managed with the 1-D Fast Fourier
transform (FFT) that makes computations of kernel functions efficient (Hees, 1990; Haag-
mans et al., 1993). While the 2-D FFT UDC is exact only in the plane, the 1-D FFT offers
the same level of exactness on the sphere as the approach uses the Fourier transform only
along the parallel which is the direction where the Poisson integral has the form of a convo-
lution integral. We apply this approach to GRACE/GOCE gravitational gradients gridded
on MOS. This chapter provides results of both closed-loop tests based on synthetic noiseless
data and processing of real gradients. The results are compared/validated with particular
global gravitational models.

3.2 Differences of GRACE/GOCE global gravitational models

Although there is no exact way for estimating the actual accuracy of downward-continued
gravitational gradients, they can be compared with any recent satellite-only global gravi-
tational model. The differences can consequently be evaluated in the light of differences
between recent GRACE/GOCE-based global gravitational models. In this section, we com-
pare selected state-of-the-art global gravitational models from the High Processing Facility
(HPF) in terms of the their mutual differences. The comparison is provided for two cases: (i)
selected global gravitational models with the fixed maximum degree since various models
are provided with different maximum degrees are compared, and (ii) the whole spectrum of
each global gravitational model will be used and respective differences will be carried out.

In Figure 3.1 the RMS values for the fixed maximum degree are shown. The differences
at MOS reach only up to a few mE; with any newer release the RMS values decrease. At the
lower level of MOS-250 km, the differences are of course amplified. The amplification factor
is about 1000 which can be expected as the realistic error amplification of the downward
continuation (below). The best agreement is between the DIR and TIM gravitational models.
For release 4 models the differences reach values of about 0.3-0.4 E on the lower spherical
surface. The worst performance is for Vzz which is well known for having the worst accuracy
from four high-accuracy components.

3.3 Iterative downward continuation and Poisson’s integral equa-
tion

The iterative approach for solving the Fredholm equation of the first kind was originally
proposed in Landweber (1951) to fill a gap in solving Fredholm equations numerically. Its
main objective was to obtain a solution of the Fredholm equation of the first kind in terms
of successive approximations (ibid). As such, this very simple concept has many times been
described or reinvented for various applications in geophysics and geodesy; however, in
most cases it was used without the appropriate reference to Landweber (1951), see, e.g.,
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Figure 3.1: RMS values of the differences between HPF GRACE/GOCE gravitational mod-
els with respect to a particular release and two different altitudes: MOS = 6637.618471
km (dashed) and MOS-250 km (solid). Differences are in LNOF on the equiangular grid
ϕ ∈ [−83, 83] arc-deg and λ ∈ [0, 359] arc-deg with one arc-degree resolution. The maximum
degree for the computation was fixed to be the highest degree available for all the models
from a particular release.

Figure 3.2: RMS values of the differences between HPF GRACE/GOCE gravitational mod-
els with respect to a particular release and two different altitudes: MOS = 6637.618471
km (dashed) and MOS-250 km (solid). Differences are in LNOF on the equiangular grid
ϕ ∈ [−83, 83] arc-deg and λ ∈ [0, 359] arc-deg with one arc-degree resolution. The maximum
degree of each model was used.
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Heiskanen and Moritz (1967); Pick et al. (1973); Oldenburg (1974); Guspı́ (1987); Xu et al.
(2007).

3.3.1 Iterative solution of to the Fredholm equation of the first kind

The Fredholm integral equation of the first kind reads (Press, 1996)

g(t) =

∫ b

a
K(t, s) f(s) ds , (3.1)

where g(t) and f(s) are two physical quantities while the K(t, s) is the kernel (weighting)
function that sets the relation between the two physical quantities. Computing g(t) from
f(s) is a direct problem, whereas computing f(s) from g(t) is an inverse problem that is
ill-conditioned.

Following (Press, 1996, p. 779), we can rewrite the Fredholm equation of the first kind in
Eq. (3.1) into a vector-matrix form for a discrete case

g = K f , (3.2)

where the direct problem is now represented by a matrix-vector multiplication, whereas the
inverse problem would require computing f = K−1 g. The inverse of the operator K is what
makes the inverse problem numerically unstable (Tenzer and Novák, 2008).

A straightforward way around the inverse of the matrix operator K is to employ an iter-
ative algorithm that requires only the computation of the direct problem, i.e., the upward
continuation. The scheme of the iterative algorithm is given (Landweber, 1951)1

fi = fi−1 + p (g − K fi−1) , (3.3)

where the input for the first iteration is replaced by the data at the upper altitude f1 =

g + p (g −K g). Hence, the algorithm can start with the given data (e.g., in our case with
the gradient data at the satellite altitude). The kernel matrix K can be computed from the
coordinates of the input and output signals.

On the other hand, the computational scheme of Eq. (3.3) requires two empirical parame-
ters to be set. First, one has to choose either the maximum number of iterations or a criterion
for stopping the iterative loop. Second, the optimal ”sensitivity” parameter p, that controls
the residuals in Eq. (3.3), must be determined or set at least to one (this is also the case of
Landweber). We recommend to choose p as high as possible in order to accelerate forward
fitting of the input data. The smaller value of the parameter p leads to more iterations (com-
puter time) that are needed to approximate the given data (Xu et al., 2007). However, using
an exceedingly large value of the parameter p does not have to ensure convergence of the
iterative procedure as shown below. There is possibly no exact way for setting the param-
eter p but its value can simply be determined by trial; in our case we usually use a value
between 2 and 3.

1In Landweber (1951) the role of f and g is interchanged. Here, we use the notation according to Press (1996).
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3.3.2 Poisson’s integral equation

The Poisson integral equation (PIE) for the sphere reads (Kellogg, 1929; Jekeli, 2007):

V (r, θ, λ) =
R(r2 −R2)

4π

∫ 2π

λ=0

∫ π

θ=0

Cf
l3

V (R, θ′, λ′) sin θ′ dθ′ dλ , (3.4)

where l2 = R2 + r2 − 2Rr cosψ = (xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2 is the squared
Euclidean distance between the outer data point P (r, θ, λ) on the geocentric sphere of ra-
dius r (in the report denoted as MOS) and the inner point Q(R, θ′, λ′) on the geocentric
sphere of radius R (for the outer problem r > R). The symbol ψ denotes the geocentric
angle between the points P and Q, whereas θ and λ are the geocentric co-latitude and the
longitude, respectively. In mass-free space, that is essential for the formulation of the Pois-
son integral equation as the Green-type solution of the Dirichlet boundary-value problem
of the potential theory, PIE gives a harmonic function V (r, θ, λ) from its values V (R, θ′, λ′)

given on the sphere beneath. Note that the gravitational potential is a harmonic function in
mass-free space as a consequence of the Poisson differential equation. The kernel function
K = R(r2 −R2)/l3 is sometimes called the reproducing kernel since it reproduces the input
signal to the same quantity at the different level. The kernel K is singular for P = Q but this
is not the case when continuing data between two different levels.

Now, we recall the two conventional reference frames that are used in our derivations:

• Earth-Fixed Frame (EFF) is an equatorial conventional coordinate frame with origin
in the geocentre, z-axis pointing to the north pole, x-axis pointing to Greenwich and
y-axis complementing the right-handed triad.

• Local North-Oriented Frame (LNOF) is a local conventional coordinate frame with
origin in the geocentre, z-axis pointing radially outward, x-axis pointing to north and
y-axis complementing the right-handed system.

The multiplier Cf in Eq. (3.4) is called herein a ”correction factor” because it provides
correct calculation for the various directional (usually Cartesian) non-harmonic derivatives
of the gravitational potential. Its value is provided in Table 3.1. For the derivatives in the
Earth-fixed Frame (EFF), it is exactly Cf = 1 as these derivatives are harmonic functions in
mass-free space (Hotine, 1969; Ray, 1984). Note that Cf is not known for many (especially
local) reference frames despite their Cartesian nature because the derivatives have not fixed
directions in these frames; see the discussion in (Bhattacharyya, 1977). An exemption is the
radial derivative of the gravitational potential in LNOF (e.g., gravity disturbance) which is
harmonic after being multiplied by its geocentric radius. However, as it is shown below,
see Table 3.2, using an approximate value for Cf still yields satisfactory results within the
iterative procedure. Indeed, from our investigations we have found that the value of Cf is
very important for non-iterative computations (i.e., inverse evaluation of PIE) but its effect
is less important for the iterative downward continuation where the input gradient data are
gradually fitted in a loop.

All low-orbiting satellites change their position with respect to the Earth’s surface so that
they gradually cover the Earth’s surface by measurements. They provide global data sets,
usually inhomogeneous, distributed between particular (co-)latitudes whose maxima and
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Table 3.1: Correction factors of PIE for two reference frames (EFF and LNOF). In LNOF
z-derivatives coincide with radial derivatives with respect to the geocentric radius r.

Functional Unit Frame Cf for PIE Remark

V m2 s−2 - 1 exact
Vi m s−2 LNOF R/r exact for Vz
Vij s−2 LNOF R2/r2 exact for Vzz
Vi, Vij m s−2, s−2 EFF 1 exact for all

minima depend on the orbital inclination with respect to the equator. The observed data
then satisfy θi ∈ [θmin, θmax] and λi ∈ [0, 2π). Computing the kernel function K for such
global data according to Eq. (3.4) would need to calculate all combinations between input
and output coordinates. This would lead to very large memory requirements because the
number of elements in K is equal to a product of all dimensions of the input and the output
(e.g., for identical square grids at upper and lower altitudes, the number of elements is equal
to n4 with n being a number of parallels or meridians). Hence, a different approach must be
involved when working with global data.

Figure 3.3: Integration scheme for convolution integrals and 1-D FFT approach.

3.3.3 1-D FFT approach applied to the Poisson integral equation

To reduce memory requirements for handling kernels on the regular grids, the 1-D FFT
approach can be employed according to Hees (1990); Haagmans et al. (1993). Generally, the
FFT replaces spatial domain computations of the convolution integral by spectral domain
computations with a subsequent inverse Fourier transform. With the 1-D FFT approach we
always get an output signal for the whole target parallel. Thus, for one particular parallel
from Eq. (3.4) we have now (ibid):

V (Pθ′)︸ ︷︷ ︸
dim=nλ

=
CfR(r2 −R2)

4π
FT−1

 θn∑
i=θ1

FT (K(Pref ,Qi, δλ)︸ ︷︷ ︸
dim=nλ

) ∗ FT (V (Qi) sin θ︸ ︷︷ ︸
dim=nλ

)

 , (3.5)
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where nλ denotes the number of points along one parallel in the grid, Pref denotes the ref-
erence point for computing values of the kernel function with respect to all points along the
whole parallel Qi. The integration scheme of the 1-D FFT approach is shown in Fig. 3.3. The
kernel for all green points is being replaced by the FFT operator applied to values computed
with one green point (Pref ) and all red (integration) points along a particular parallel. Then,
the convolution integration on the sphere is defined as the inverse FFT applied to a sum of
contributions from all individual parallels (all red points).

Figure 3.4: Kernel volume for K in the classical approach (solid lines) and 1-D FFT approach
(dashed lines) for λ ∈< 0, 2π) and θ ∈< 7, 173 > arc-deg (GOCE-like grid, in green) and
θ ∈< 3, 177 > arc-deg (SWARM-like grid, in black). The volume is computed for double
precision, the x-axis shows both the spherical harmonic degree and the corresponding grid
resolution in arc-min; y-axis is in GBy.

In Figure 3.3.3 relevant memory requirements to store the matrix operator K in the classi-
cal and 1-D FFT approaches are compared for GOCE-like and Swarm-like grids. For exam-
ple, the 60 arc-min grid yields 27 GBy in the classical approach, while only 0.1 GBy within
the 1-D FFT approach. Note that some interpreting languages like MatLab (The MathWorks
Inc., 2011) automatically allocate 64 bytes to store imaginary numbers in double precision
(e.g., after applying FFT). Because the kernel function K is even with respect to Pref , one
can use only real(FT (K)) to save computer memory by the factor of two; this is already
considered in Fig. 3.3.3.

In general, data grids not denser than 10 arc-min resolution are relevant to gradient data
at the mean satellite altitude. The signal of the gravitational field is strongly attenuated with
increasing altitude and angular resolutions below 30 arc-min are far beyond the resolutions
of all existing satellite-only global gravitational models; see an overview of recent global
gravitational models at ICGEM.

http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html
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3.4 Application to GRACE/GOCE gradient data

In this section, we apply the spherical iterative DC to GRACE/GOCE gravitational gra-
dients at equiangular grids and MOS. The results are compared with recent global grav-
itational models but it must be emphasized that real GRACE/GOCE gravitational gradi-
ents are not fully consistent with any particular global gravitational model. The differences
come from different time spans of available data, processing methodologies, etc. Our real
GRACE/GOCE gravitational gradients were prepared according to strategies described in
Fuchs and Bouman (2011). Gravitational gradients were continued to the mean orbital
sphere and gridded to the global grids with the equiangular resolution of 10 arc-min. For
comparison of the results we will use TIM-r3 (Pail et al., 2011).

We apply the algorithm for DC described in the previous sections. When comparing real
GRACE/GOCE gradient data with GOCE-based global gravitational models, a choice of the
maximum degree and order plays an important role. This question originates in the fact that
we continue a ”single component”2 data while most of the GOCE global gravitational mod-
els are based on more than one component (usually including three or four high-accuracy
components). In addition, the maximum degree and order of the gravitational model is
usually set higher to reduce aliasing from the high-frequency noise. Here, the maximum de-
gree n = 180 seems to be appropriate; this choice is supported by the GNSS-levelling data
that indicate a larger noise level in higher frequencies; see Gruber et al. (2011); Gruber and
Rummel (2013).

Table 3.2: RMS of differences between the TIM-r3 gradients and the GRACE/GOCE gradi-
ents on the 10 arc-min grid θ ∈ [7, 173] arc-deg, λ ∈ [−π, π) continued along 250 km. The
global gravitational model TIM-r3 model to nmax = 180 with GRS80 (zonals up to n = 10)
removed were used. The integer subscript in RMS denotes how many parallels were cut in
north and south for the computation of the RMS value to reduce edge effects.

Functional Frame Unit RMS0 RMS5 RMS10 Remark

Txx LNOF E 4.206 4.212 4.226 before noise removal
Txx LNOF E 0.575 0.525 0.520 after noise removal
Tyy LNOF E 4.011 4.011 4.023 before noise removal
Tyy LNOF E 0.567 0.493 0.484 after noise removal
Tzz LNOF E 5.979 5.988 6.004 before noise removal
Tzz LNOF E 0.882 0.822 0.817 after noise removal
Txz LNOF E 6.372 6.390 6.174 before noise removal
Txz LNOF E 0.745 0.658 0.649 after noise removal

The GRACE/GOCE gradients are given within the period of 2009/11/01 – 2012/12/06.
Before their DC, the following pre-processing steps, see Section 2.3, were applied to the
GRACE/GOCE gradient data:

2As we work with gravitational gradients in LNOF, they also contain signals from other components mea-
sured in GRF because of the tensor rotation.
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1. rotation of the gradient tensor given along the real orbit from GRF to LNOF according
to Fuchs and Bouman (2011),

2. UDC of the gradient tensor (already in LNOF) from the real orbit to MOS, and

3. gridding data from the along track representation on MOS to equiangular grids on
MOS.

The first step takes into account i) the frequency dependent accuracy of the GRACE/GOCE
gradient data because the high-accuracy signal is contained over the gradiometer MBW, and
ii) an unwelcome error contamination of all tensor components during the tensor rotation
with two less-accurate components Vxy and Vyz . Since the Euler rotation is given as a linear
combination of all components, the error from the less-accurate data can be projected onto
the high-accuracy signal; such a contamination is a function of rotational angles. To prevent
this contamination, spectral filtering and an a priori global gravitational model is usually
employed to replace the less-accurate signal (over certain frequencies) prior the rotation; for
more details, see Section 2.1.

Figure 3.5: Txx in LNOF from DC before (left) and after (right) the noise removal; Txx from
TIM-r3 up to nmax = 180 (middle panel) on the 10 arc-min grid at r = MOS − 250 =

6387.618471 km.

The second step yields the gradient data in LNOF on MOS which is needed for the surface
integration with the 1-D FFT approach. For the given period, the radius of the mean orbital
sphere is equal to MOS = 6637618.471 m. For UDC r → MOS. We have used the gradient
continuation according to Eq. (2.6). The radial derivative was computed with the GOCE-
only global gravitational model TIM-r3 and the 5-point numerical derivative in agreement
with Fig. 2.20.

Once the gradiometric tensor is simulated at all points, see Fig. 2.20, one can control how
the radial derivative fits the data from the gravitational model; i.e., the nominal accuracy
of this continuation. We have found the minimum nominal accuracy is at the level of 0.1
mE (with the RMS value of 0.01 mE) that is one order of magnitude smaller than the overall
accuracy of the GRACE/GOCE data (Bouman and Fuchs, 2012). Thus, this step does not
harm the relative accuracy of the gradient data.

In the third step, the tensor data in LNOF were gridded on MOS. From the along-track
representation we obtained the regular grid with the angular resolution of 10 arc-min. For
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Figure 3.6: Convergence of the iterative procedure for Txx in LNOF for p = 2.1 before and
after the noise removal related to Fig. 3.5.

gridding the gridfit function was used (D’Errico, 2006)3 as discussed above.

3.4.1 Results for continuation of GRACE/GOCE gradient data

We start with the results obtained for Txx shown in Fig. 3.5. Because the real gradient data
are contaminated with the observation noise, we have split the downward continuation
into two steps. First, the input satellite gradient data are continued until the appropriate
numerical convergence is achieved which is indicated by the sum of residuals. At this mo-
ment, further iterations would not improve the fit. The resulting residuals are due to high-
frequencies that are being fitted at the end of the procedure because UC used iteratively acts
as a smoothing operator. The result of the first step can be seen in Fig. 3.5 (left panel); this
result is related to the red curve in Fig. 3.6. After 600 iterations the procedure was stopped
and the difference between the fit and the original data could be addressed as the white
high-frequency noise. But, since we end up with the noise estimate, the estimated noise can
be removed from the original data and the iteration procedure can start once again with the
noise-reduced input. Thus, the second step is the downward continuation of the data with
the estimated noise removed. Then, one may expect the iteration will decrease the residuals
even further than in the first step. The right panel in Fig. 3.5 with the green curve in Fig. 3.6
illustrates how the iterative procedure behaves after the noise removal. We can see that the
iterative procedure can take more iterations than in the first run. The obvious advantage is
that we do not need any a priori filter for removing the observation noise; only the Poisson
integral equation is being used twice.

The first step from Fig. 3.6 (black dashed line) numerically converged approximately
during 600 iterations while more than 4000 iterations were used in the second step (black
solid line). For the immediate comparison, Txx computed from the TIM-r3 model up to
nmax = 180 is shown in the middle panel of Fig. 3.5. It can be seen that all dominant features

3This function performs significantly faster with newer MatLab editions; several hours with 2008a compared
with a few minutes and 2011a were needed for gridding on the same computer.
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Figure 3.7: The square root of PSDs for Txx on the 10 arc-min grid from i) DC (related to
Figs. 3.5 and 3.6), and ii) the TIM-r3 model for selected maximum degrees.

were recovered and a great deal of the observation noise was removed from the solution of
the second step. The relevant RMS values for the three data grids are listed in Table 3.2. The
fit (not accuracy) between TIM-r3 and the continued gradient data is much improved after
the noise was removed. For Txx the RMS value decreased from 4 to 0.5 E. Cutting 5 or 10
northernmost and southernmost parallels did not affect the RMS values significantly. The
edge effects are not present when using GRACE/GOCE gradient data.

In order to look at the results in more detail, Fig. 3.7 shows the square root of PSD of Txx
both for the continued gradients (for h = 250 km) and for gradients computed from TIM-r3
with various maximum degrees. In this figure the two black curves indicate the first and the
second step. We can see that the noise spans almost over all frequencies but, after the noise
removal, the signal was significantly reduced over the higher frequencies and corresponds
now in the best way to TIM-r3 up to the degree 180. This choice of the maximum degree
180 seems to be realistic for single-component data after the downward continuation. It
can also be seen that the signal from TIM-r3 for all maximum degrees decays faster than
for the continued gradient data. This might be caused either by the presence of the noise
that cannot be reduced with PIE in the iterative procedure (because the iteration procedure
already converged as shown in Fig. 3.6) or by the larger signal of the continued gradients in
these high frequencies. However, this problem still remains an open question.

Equivalent plots to that for Txx for the components Tyy, Tzz and Txz are shown in Figs. 3.8,
3.9 and 3.10 while the RMS values are provided in Table 3.2. From this table it is obvious
that results for Txx, Txz, Tyy and Tzz are fully consistent. Despite we chose an approximate
Cf , see Table 3.1, its effect within the applied iterative algorithm was negligible and differ-
ences between the solution and TIM-r3 reached RMS values below 1 E for all the gradients.
The worst agreement is for Tzz and Txz that are components with the worse performance if
compared with Txx and Tyy; see for example Bouman and Fuchs (2012).
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Figure 3.8: Convergence of the iterative pro-
cedure for Txz, Tyy and Tzz in LNOF for p =

2.1 before and after the noise removal for the
downward continuation over 250 km.

Figure 3.9: The square root of PSDs for
Txz, Tyy and Tzz on the 10 arc-min grid from
DC over 250 km and the TIM-r3 model.

3.5 Summary and discussion

The iterative downward continuation, based on the spherical Poisson integral and the Fast
Fourier Transform, was applied to the GRACE/GOCE gradient data given on the mean
orbital sphere. The algorithm avoids any matrix inversion as it is based on the forward
problem (upward continuation) in an iterative way according to Landweber (1951).

The GRACE/GOCE gradient data on the 10 arc-min grid were continued downward for
150 and 250 km from MOS. We emphasize that there is no etalon available for estimating
the absolute accuracy of the downward continued gradient data. Any GOCE-based global
gravitational model has incorporated different data or it is based on processing methodolo-
gies that are difficult to directly be compared with the continuation procedure (e.g., some
regularization is usually applied to coefficients of higher degrees and orders). Therefore, the
results were compared with TIM-r3 up to the maximum degree 180 (out of 250) because the
corresponding signal content of this global gravitational model is very close to our grids, see
Figs. 3.10. The discrepancies (not accuracy) varies between 0.5 and 1 E while the worst per-
formance is for Tzz . This is the component known for the worse performance if compared
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Figure 3.10: The downward continuation of Vxz , Vyy and Vzz for 250 km with (left) and
without the noise (right) vs. TIM-r3 up to the maximum d/o 180 (middle panel).
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Figure 3.11: The Laplace equation evaluated at three reference heights MOS, MOS-150 and
MOS-250 km and their histograms.

to other high-accuracy components.

Table 3.3: Overview of results from the downward continuation and their Laplacians (∆T =

Txx + Tyy + Tzz). RMSnoise
0 denotes the result before the noise removal with the RMS values

in (E).

Height (km) Iterations I/II RMSnoise
0 (∆T ) RMS0(∆T ) RMS5(∆T ) RMS10(∆T )

MOS− 0 - - 0.00677 0.00679 0.00681
MOS− 150 40/2000 0.574 0.052 0.052 0.052
MOS− 250 600/4000 8.526 0.341 0.342 0.344

The most important issue for applications on real gradient data is how the observation
noise is reduced or removed from the signal. In our approach no a priori filter, that would
clean up the signal after the downward continuation, was applied. Instead, only the Poisson
integral equation was used in two steps to fit (and reproduce) observed gradient data at the
upper (satellite) altitude. Such a double application of the PIE allows first to fit the data
excluding their high-frequency noise (upward continuation acts as a low-pass filter that
allows for recovery of long wavelengths first) and second to continue this ”clean” data.
In both rounds we employed a maximum number of iterations that can still reasonably
contribute to the solution.

The elimination of the observation noise can especially be seen in Table 3.3 which provides
the values of the Laplacian at the ground level. At MOS− 250 km we obtained RMS(∆T ) =

8.53 E and RMS(∆T ) = 0.34 E in the first and the second round, respectively. Because the
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Laplacian at the satellite altitude gives about RMS = 0.0068 E, the noise amplification for
the first round is about 1200 and 50 for the second round. For continuation for 150 km the
absolute accuracy in terms of RMS(∆T ) improved from 0.574 E to 0.052 E. Thus, the noise
removal by double application of PIE helps to fulfil the Laplace equation by the factor of
10-20. The agreement (not the accuracy) of individual gradients with respect to TIM-r3 was
improved by the factor of 7-10 as documented by Table 3.2. In addition, from Table 3.2 it can
also be seen that the choice of Cf is less important (all components act consistently) and that
the edge effects affect the solution less significantly as Table 3.3 nicely indicates.

In Figure 3.11 the spatial plots of the Laplace equation are shown. A geographical corre-
lation of the Laplacian with signal magnitudes over local extremes like in the mountains is
not indicated and histograms seem to satisfy the normal distribution around a mean value.
On the other hand, there is a latitudinal dependence that is likely caused with a worse per-
formance during the interpolation. In the areas closer to the equator the interpolation must
cope with longer distances and less data in a latitude/longitude bins. Note that the colour
bars in Figure 3.11 are fixed to a half of {min,max}.

We can conclude that the overall accuracy in terms of the Laplacians in Table 3.3 reached
the level of magnitude, with which the selected GOCE/GRACE global gravitational models
differ among themselves in values of the gravitational gradients, see Figs. 3.1 and 3.2. We
emphasize this is only an indicative comparison as the optimum maximum degree of any
GRACE/GOCE global gravitational models is not known exactly and might depend on the
application. It is also important to emphasize that global gravitational models with GOCE
data are usually based on three or four high-accurate components. Thus, a direct compar-
ison of these models with single-component grids is not balanced. In order to compensate
this, we recommend to use all delivered components. In general, the output 10 arc-min grids
of Txx, Txz, Tyy and Tzz at three reference altitudes are delivered and seem to be reasonably
accurate for further applications in geodesy and geophysics.
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4 Validation and combination of GGs (WP3)

In this chapter, two operations, that concern measured and continued GRACE/GOCE grav-
itational gradients, are discussed. First, the measured GRACE/GOCE gravitational gra-
dients can be validated through independent available ground data; they are represented
in the project by either altimetry (Study area A) or ground gravity (Study area B). Second,
the GRACE/GOCE gravitational gradients can be merged with the independent informa-
tion originating from ground data; in this case, high frequencies missed in the satellite data
(due to the logarithmic attenuation of the gravitational field intensity with an increasing
distance from gravitating masses) are sought to enhance the sensitivity of the combined
gravitational gradients to smaller source mass anomalies. These two operations are closely
related. Actually, the same apparatus may be used with the only difference being an em-
phasis on different spectral parts of the ground gravity data: low frequencies (up to degree
approximately 250) will be exploited for validation while high-frequencies (above degree
approximately 250) will be used for combination. As the two operations rely on the same
input information and also respective methods and techniques are mutually interlaced, it is
natural to describe these two operations side-by-side in one chapter.

The application of ground anomalous gravity (anomalous as gravity stations are usually
referenced with respect to mean sea level) has already been proposed by several authors,
e.g., (Kern and Haagmans, 2005; Janák et al., 2009; Wolf and Müller, 2008). In case of marine
and aerial gravity data just a small modification of the method is required since disturbing
gravity (disturbing as observations are positioned by GNSS with respect to the international
reference ellipsoid) can be derived. Altimetry observations of instantaneous sea level cor-
rected for dynamic topography provide geometry of the Earth’s gravity field (geoid) that
can be linked to values of the tested satellite gravitational gradients: altimetry yields the
geopotential surface of which the curvature may easily be related to the second-order di-
rectional derivatives of the gravitational potential, i.e., values of the gravitational gradients,
see, e.g., (Vanı́ček and Krakiwsky, 1986).

The estimation of gravitational gradients from discrete ground (marine, aerial) gravity
data (relating various functionals of the gravitational potential) can be linked to forward
and inverse modelling of gravitational fields as both the validation and combination steps
may use derived or modelled values of the gravitational gradients. The main idea of the val-
idation approach is to generate gravitational gradients from ground gravity data with such
spectral properties so they can match those of measured satellite gravitational gradients
(comparable spectral contents). Combining properly gravitational gradients coming from
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heterogeneous sources is another challenging operation when individual contributions are
weighted according to their stochastic properties. Alternatively, the data must complement
each other in terms of their spectral contents.

The validation of the combined GRACE/GOCE gravitational gradients as delivered by
Consortium 1 in November 2012 is closely related to evaluation of gravitational gradients
from independent data. The validation of the GRACE/GOCE gravitational gradients has
been discussed quite extensively in recent geodetic literature. The main idea is to evaluate
the accuracy or reliability of measured satellite gravitational gradients by independent local
or regional data collected at the surface of the Earth or in its close vicinity. Within the Work
Package 1 of the project, available ground and marine gravity data and altimetry data were
collected over the two study areas (mid-oceanic Reykjanes Ridge in the North Atlantic –
Study area A and Africa – Study area B). These data were also used for evaluation of high-
frequency gravitational gradients for combination purposes.

4.1 Estimation of gravitational gradients from ground gravity

In this section, the apparatus for derivation of gravitational gradients from ground anoma-
lous and disturbing gravity data is formulated. This step is important for both the validation
and combination of satellite gravitational gradients. In general, the apparatus is the same,
however, the apparatus must be modified for each of the two operations. These modifica-
tions are discussed in the respective sections of this chapter.

Traditionally discrete values of relative gravity have been collected at ground for decades.
Relative gravimeters provide spatial variations of gravity that can be used for adjustment
of gravity values connected by repeated observations to absolute gravity points. Before
their adjustment gravity data must be corrected for all known temporal variations (namely
tidal corrections). Adjusted gravity data are further reduced for the gravity effect of the so-
called normal gravity field generated by a simplified model of the Earth – a rotating biaxial
geocentric ellipsoid (GRS80, Moritz, 1980) with the homogeneous mass density distribution.
Since such model gravity (called in geodesy normal gravity) can easily be computed in every
point x outside the reference ellipsoid (under the condition its height above the reference
ellipsoid – geodetic height – is known), most of available ground gravity data still result
in anomalous gravity where normal gravity is computed by using orthometric or normal
heights (heights above the mean sea level measured by levelling) instead of geodetic heights
(heights above the reference ellipsoid measured by satellite positioning techniques such as
GNSS).

In the former case, normal gravity can be evaluated only at the telluroid y, i.e.,

∆g(x,y) = g(x)− γ(y) . (4.1)

This so-called free-air gravity anomaly (scalar-valued since ground gravimetry provides
routinely only the modulo of the gravity vector usually approximated by its vertical/radial
component) is related to the disturbing gravitational potential T through the fundamental
gravimetric equation (Heiskanen and Moritz, 1967, Sect. 2.13)

∆g(x) = − ∂T (x)

∂r
− 2

|x|
T (x) . (4.2)
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Equation (4.2) is only a spherical approximation generally accepted for formal derivations
(it is not adequate in some precise computations in geodesy, e.g., of the geoid). Moreover, it
allows for expressing the gravity anomaly as a one-point function only. Finally, the disturb-
ing gravity potential is the gravitational potential V reduced for its normal (reference model
– GRS80) counterpart U

T (x) = V (x) − U(x) . (4.3)

The gravity anomaly in Eq. (4.2) and the disturbing gravity potential in Eq. (4.3) can then be
related by solving the traditional geodetic boundary-value problem (Heiskanen and Moritz,
1967, Sect. 2.16). Relating both functions defined in two points at two different levels (point
x along the satellite trajectory vs. point x′ located at the reference geocentric sphere S of
radius R representing the mean Earth’s geocentric radius), the solution has the form of so-
called extended Stokes’s integral (Heiskanen and Moritz, 1967, Sect. 6.4)

T (x) =
1

|S|

∫ ∫
S

∆g(x′) K(x,x′) dS(x′) . (4.4)

|S| is the surface (measure) of the approximating sphere.
Applying a tensor-valued gradient operator ∇ ⊗ ∇ and swapping the order of differ-

entiation and integration (permissible through Leibnitz’s integration rule), the solution for
gravitational gradients gets the form (Janák et al., 2009)

∇⊗∇T (x) =
1

|S|

∫ ∫
S

∆g(x′) ∇⊗∇K(x,x′) dS(x′) . (4.5)

Components of the tensor-valued integration kernel K can be derived both in a closed (ana-
lytical) form and in a spectral (series) form. With respect to a band-limited character of the
satellite gravitational gradients, the spectral form (infinite series of Legendre polynomials
Pn) truncated at the required maximum degree is preferred, i.e.,

∇⊗∇K(x,x′) =
∑
n

2n+ 1

n− 1
∇⊗∇

[ (
|x′|
|x|

)n+1

Pn

(
x · x′

|x| |x′|

) ]
. (4.6)

If marine or aerial gravity is used instead of ground gravity (or in case ground gravity is
positioned by GNSS), the integral in Eq. (4.5) must be modified. Instead of using gravity
anomalies, much simpler (in terms of their definition and interpretation) gravity distur-
bances can be applied

δg(x) = − ∂T (x)

∂r
. (4.7)

The modified integration kernel to be used in connection with the values of Eq. (4.7) is then

∇⊗∇K(x,x′) =
∑
n

2n+ 1

n+ 1
∇⊗∇

[ (
|x′|
|x|

)n+1

Pn

(
x · x′

|x| |x′|

) ]
. (4.8)

One could refer to this kernel function as the extended Hotine integral equation.
Assuming band-limited satellite gravitational gradients and the formalism of geocentric

spherical coordinates, the spectral forms of the respective kernel functions read

∂rK(ψ, κ) =
1

r

∑
n

2n+ 1

n+ 1
κn+1 Pn(cosψ) , (4.9)
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∂ψK(ψ, κ) = −
∑
n

2n+ 1

n+ 1
κn+1 ∂ψPn(cosψ) , (4.10)

∂r∂ψ K(ψ, κ) =
1

r

∑
n

2n+ 1

n+ 1
κn+1 ∂ψPn(cosψ) , (4.11)

∂ψ∂ψK(ψ, κ) =
∑
n

2n+ 1

n+ 1
κn+1 ∂ψ∂ψPn(cosψ) . (4.12)

Here, the unitless attenuation factor κ is defined as the ratio of the two geocentric radii
|x′| and |x|; the parameter ψ is the angular (spherical) distance between the two geocentric
vectors x and x′ defined as follows:

cosψ =
x · x′

|x| |x′|
. (4.13)

Associated Legendre polynomials Pn of degree n and their derivatives can be evaluated
through the following recursions:

cosψ Pn(cosψ) =
n+ 1

2n+ 1
Pn+1(cosψ) +

n

2n+ 1
Pn−1(cosψ) , (4.14)

cosψ ∂ψPn(cosψ) =
n

2n+ 1
∂ψPn+1(cosψ) +

n+ 1

2n+ 1
∂ψPn−1(cosψ) , (4.15)

∂ψ∂ψPn(cosψ) + cotψ ∂ψPn(cosψ) + n (n+ 1) Pn(cosψ) = 0 . (4.16)

Applying a normalized infinitesimal spherical surface element dS = dS/|S|, the compo-
nents of the gradiometric tensor in the spherical coordinate frame read

∂r∂rT (r, ϕ, λ) =

∫ ∫
S

∆g(ϕ′, λ′) ∂r∂rK(ψ, κ) dS(ϕ′, λ′) , (4.17)

∂ϕ∂ϕT (r, ϕ, λ) =

∫ ∫
S

∆g(ϕ′, λ′)
[
∂ψ∂ψK(ψ, κ) (∂ϕψ)2 + ∂ψK(ψ, r) ∂ϕ∂ϕψ

]
dS(ϕ′, λ′), (4.18)

∂λ∂λT (r, ϕ, λ) =

∫ ∫
S

∆g(ϕ′, λ′)
[
∂ψ∂ψK(ψ, κ) (∂λψ)2 + ∂ψK(ψ, κ) ∂λ∂λψ

]
dS(ϕ′, λ′), (4.19)

∂r∂ϕT (r, ϕ, λ) =

∫ ∫
S

∆g(ϕ′, λ′) ∂r∂ψK(ψ, κ) ∂ϕψ dS(ϕ′, λ′) , (4.20)

∂r∂λT (r, ϕ, λ) =

∫ ∫
S

∆g(ϕ′, λ′) ∂r∂ψK(ψ, κ) ∂λψ dS(ϕ′, λ′) , (4.21)

∂ϕ∂λT (r, ϕ, λ) =

∫ ∫
S

∆g(ϕ′, λ′) [∂ψ∂ψK(ψ, κ) ∂ϕψ ∂λψ + ∂ψK(ψ, κ) ∂ϕ∂λψ] dS(ϕ′, λ′).(4.22)

Required formulas – derivatives of the spherical distance ψ – can be summarized as follows:

∂ϕψ = − cosα , (4.23)
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∂λψ = − cosα sinα , (4.24)

∂ϕ∂ϕψ = sin2 α cotψ , (4.25)

∂λ∂λψ =
cosϕ

sinψ

[
cosϕ′ cos

(
λ′ − λ

)
− cosϕ sin2 α cosψ

]
, (4.26)

∂ϕ∂λψ = sinα ( sinϕ − cosϕ cosα cotψ ) . (4.27)

The forward azimuth α of the great circle connecting evaluation and integration points can
be derived by basic rules of spherical geometry.

4.1.1 Testing estimation of gravitational gradients from ground gravity

According to the integral algorithms described in the previous section, grids of gravitational
gradients can be computed from ground gravity anomalies or disturbances. To test the al-
gorithm and its computer realization, a global equiangular grid of degree-limited (50 ≤ n ≤
250) gravity disturbances with the angular resolution of 15 arc-min was synthesized from
the global gravitational model EGM2008 (Pavlis et al., 2012). The degree-banded gravita-
tional gradients were computed over the Study area B (African continent). Since the input
gravity data were available globally, no truncation errors had to be computed and no kernel
modifications were necessary. Gravitational gradients computed by the discrete integration
from synthesized ground gravity were compared with reference gravitational gradients syn-
thesized directly from EGM2008. All gravitational gradients relate as usually to LNOF.

Input degree-banded disturbing gravity limited to spherical harmonic degrees 50-250 syn-
thesized from EGM2008 at the equiangular grid of 15 arc-min is plotted at Fig. 4.1 (left
panel). The random noise with the RMS value of 1 mGal (i.e., 1% of the signal magnitude)
is depicted in Fig. 4.1 (right panel). Differences between the integrated gravitational gra-
dients and their reference values synthesized directly from EGM2008 for all 6 gravitational
gradients in LNOF are shown in Fig. 4.2 (gravitational gradients in LNOF are sorted from
the top and from left to right as follows: xx, xy, xz, yy, yz and zz); respective values for
disturbing gravity contaminated by the input random noise of 1 mGal are then shown in
Fig. 4.3 (panels sorted as in Fig. 4.2).

Clearly, the magnitude of integration errors for the noise-free gravity data is well below
1 mE (note the scale bars in µE). The respective differences for the noisy input data are at
the level of 0.1 E, i.e., they reached approximately 1% of the signal magnitude. Thus the
signal-to-noise ratio remained at the same level. For the errorless input gravity data and the
given test design (geographic region, data resolution and noise level), the magnitude of the
integration errors seems to reflect the adopted integration scheme (Gaussian quadrature).
The integration errors for noise-free gravity data reached their extremes at the level of tens
of µE, see the panels in Fig. 4.2. Their average magnitudes varied among the six components
of the gradiometric tensor. The smallest errors were obtained for the xy and yz components,
the largest errors for the zz component. For input gravity contaminated by the random
noise of 1 mGal, the results showed significantly larger deterioration – the effect of the noise
propagation is clearly visible at all panels in Fig. 4.3. The structure of the noise corresponds
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Figure 4.1: Synthesized degree-banded (50-250) ground gravity disturbances (mGal): noise-
free data (left) and the random noise of 1 mGal (right).

to the particular directional derivatives but its magnitude remains at the same level for all
the six gradients. Still, the noise level for the integrated gravitational gradients remains
below 1% of the signal magnitude, see the panels at Figs. 4.3.

Based on these tests it was concluded that the algorithm can be applied for the evaluation
of gravitational gradients from available ground gravity information. The new software was
developed in FORTRAN for this task.
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Figure 4.2: Integration errors for band-limited (50-250) noise-free gravity (15 arc-min).
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Figure 4.3: Integration errors for band-limited (50-250) 1 mGal noisy gravity (15 arc-min).
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4.1.2 Estimation of gravitational gradients over the two study areas

For the two study areas of the project, the band-limited gravitational gradients were esti-
mated from ground gravity data for both the validation and combination purposes. In the
project proposal it was anticipated that over the Study area A (Reykjanes Ridge) de-trended
and adjusted marine gravity data will be used for combination and validation purposes.
Discrete ground gravity data were then foreseen as the only alternative for the Study area B
(African continent). For both study areas the proposed data types and available data were
tested. Marine gravity data in the Study area A were difficult to be used from the very
beginning of the project: data collected along individual ship tracks exhibited severe trend
problems that were never solved in a satisfactory way.

At the end, an alternative data set of ground gravity was evaluated from the global mean
sea surface model DTU10 with the angular resolution of 1 arc-min. The local gravity infor-
mation based on the DTU10 model was merged with gravity data derived from EGM2008,
see Fig. 4.4. Ground gravity disturbances are given at the spherical coordinate grid with
the equiangular resolution of 15 arc-min. Thus, the gravity data are limited by degree 720
of the spherical harmonic expansion. The contribution of the DTU10 data with respect to
EGM2008 is shown in Fig. 4.5. To get the required spectral limitation, the combined dis-
turbing gravitational field was further reduced for a low-degree reference field based again
on EGM2008; in the particular test scenario, the reference field was limited by degree 150.
Degree-banded gravity disturbances used for the test study limited to degrees 151-720 are
shown in Fig. 4.6.

Figure 4.4: Merged ground gravity based on
DTU10 and EGM2008 models (mGal).

Figure 4.5: Contribution of the DTU10 data
with respect to EGM2008 (mGal).

The combined degree-banded DTU10/EGM2008 gravity disturbances were finally con-
verted to the gravitational gradients by the integral formulas of Eq. (4.5). The map of the
estimated zz gravitational gradient is plotted in Fig. 4.7. These values can visually be com-
pared with the values of the band-limited gravitational gradients synthesized directly from
the EGM2008 model, see Fig. 4.8. The maps show similar features, however, their direct
comparison is not possible: the contribution of the local gravity disturbances coming from
the DTU10 model shown at Fig. 4.5 is significant. Finally, values of the topographic gravita-
tional gradients computed over the given degrees from the KIT model are shown in Fig. 4.9.
Even these data cannot directly be compared to the results computed from the ground grav-
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Figure 4.6: Combined degree-banded
ground gravity based on DTU10 and
EGM2008 (mGal).
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Figure 4.7: Degree-banded zz gravitational
gradients from ground gravity (E).

ity data: gravitational gradients computed from the KIT model reflect the effects only of
selected gravitating masses. Still, some main features can be correlated at all the gradient
fields.
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Figure 4.8: zz gravitational gradients syn-
thesized from EGM2008 (E).
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Figure 4.9: zz gravitational gradients for-
ward modelled from KIT (E).

4.2 Validation and combination of gravitational gradients

Generally, ground gravity can be convoluted with an extended type of the Stokes kernel
that must be modified in order to generate band-limited gravitational gradients at satellite
altitudes. The modification is rather simple as it consists of applying the gradient operator
to the band-limited Stokes kernel function, see Eq. (4.4). The resulting tensor-valued func-
tion of 2-point positions in 3-D space is also sometimes referred to as the Eötvös kernel, see
Eq. (4.5). The tensor-valued kernel operator of Eq. (4.8) performs then two operations si-
multaneously: (i) it continues anomalous gravity upwards, and (ii) it transforms one scalar
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anomalous gravity into six components of the gradiometric tensor. Thus, the operator com-
bines the attenuation of the gravitational signal with an increasing altitude and logarithmic
amplification of the signal frequencies. If disturbing gravity is available (in case of known
geodetic heights of ground observation points or in case of marine or aerial gravity), a small
modification of the surface integral consisting of replacing the Stokes integral kernel by its
Hotine counterpart is required; it consists of a rather small modification of eigenvalues in
their expansion into a degree-limited series of the Legendre polynomials, cf. Eqs. (4.6) and
(4.8).

Satellite altimetry over the Study area A provided interesting ground data sets that could
be used to validate satellite gravitational gradients. Altimetry allows for recovery of the
geoidal undulations (heights) that describe geometry of the mean sea level (reference equipo-
tential surface of the Earth’s gravitational field) through discrete heights with respect to the
adopted Earth’s model (reference ellipsoid GRS80). As the mean curvature of the equipoten-
tial surface can directly be related to values of the diagonal components of the gradiometric
tensor, altimetry data are particularly suitable for the validation tasks. However, the geoidal
undulations represent at the same time scaled values of the disturbing gravity potential,
second-order derivatives of which shall be validated.

The validation procedure of the continued satellite gravitational gradients based on inde-
pendent ground data is as follows:

• removing low-frequency gravitational gradients from satellite gravitational gradients,

• downward continuation of residual satellite gravitational gradients to the ground,

• removing low-frequency gravity from ground anomalous/disturbing gravity at the
ground level,

• evaluation of band-limited gravitational gradients from residual ground gravity,

• direct comparison of satellite gravitational gradients with those based on ground data.

Assuming high-frequency gravitational gradients can be computed by forward modelling
techniques, then the validation procedure may alternatively read as follows:

• removing low-frequency gravitational gradients from satellite gravitational gradients,

• computing low-frequency gravity from EGM2008 at the ground level,

• computing high-frequency gravity by any forward modelling technique at the ground
level,

• removing low- and high-frequency gravity components from available ground gravity
data,

• upward continuation and inversion of band-limited gravitational gradients to the satel-
lite level,

• direct comparison of band-limited satellite gravitational gradients with those based on
ground data.
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As the ground data available to the consortium over the two study areas proved to be inac-
curate for the validation purposes, a different scenario was used. Band-limited anomalous
ground gravity were synthesized from EGM2008. These data were converted by integral
transformations into gravitational gradients that were compared to observed gravitational
gradients at the satellite level. Results of this comparison can be found in Table 4.1. As it
can be seen, values of the standard deviations for all the gradient components are below
0.1 E. Table 4.2 then lists differences between GRACE/GOCE gravitational gradients and
their respective reference values synthesized directly from EGM2008. The differences are
significantly smaller in this case indicating the effect of numerical integration required for
estimation of gravitational gradients from ground data.

grad min max mean sigma
xx −0.291 0.272 0.001 0.051
xy −0.121 0.125 0.000 0.030
xz −0.329 0.363 0.001 0.063
yy −0.398 0.271 0.000 0.061
yz −0.310 0.357 0.000 0.069
zz −0.540 0.708 −0.004 0.084

Table 4.1: GRACE/GOCE gravitational gra-
dients vs. gradients estimated from ground
data (E).

grad min max mean sigma
xx −0.102 0.119 0.000 0.013
xy −0.026 0.031 0.004 0.004
xz −0.216 0.175 0.000 0.022
yy −0.108 0.076 0.000 0.011
yz −0.041 0.038 0.000 0.006
zz −0.142 0.171 0.000 0.020

Table 4.2: GRACE/GOCE gravitational gra-
dients vs. gradients synthesized directly
from EGM2008 (E).

Having computed values of the gravitational gradients with a spectral content extending
that of the available satellite gradiometric data, the combination of the two data sets can be
performed. The combination consist of the following steps:

• synthesizing low-frequency gravitational gradients from EGM2008 at both satellite
and ground levels,

• removing the low-frequency gravitational gradients from satellite gravitational gradi-
ents,

• downward continuing residual satellite gravitational gradients to the ground,

• restoring gravitational gradients at the ground level by adding residual satellite and
reference gradients,

• evaluating high-frequency gravitational gradients at the ground level from available
ground gravity and altimetry data,

• combining high-frequency gravitational gradients to continued satellite gravitational
gradients.

4.3 Results and summary

The methodology for estimation of gravitational gradients from independent ground grav-
ity data was discussed in this chapter. The method and its computer realization were tested
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by using synthetic gravity disturbances derived from EGM2008. The synthetic data had
spectral properties selected to be as close as possible to actual GRACE/GOCE gravitational
gradients. The tests have shown that the derived formulas are correct and the computa-
tional algorithm is reasonably stable under the presence of the observation noise. The noise-
to-signal ratio of input gravity disturbances and output gravitational gradients remained at
the same level. This conclusion applies to all six gravitational gradients.

grad min max mean sigma
xx −4.731 3.672 −0.143 1.196
xy −3.336 2.803 −0.065 0.678
xz −5.948 5.017 −0.153 1.360
yy −5.973 4.075 −0.361 0.998
yz −5.500 5.741 −0.067 1.227
zz −6.518 9.826 0.505 1.896

Table 4.3: Residual (n = 2 − 250) gravita-
tional gradients from ground data (E).

grad min max mean sigma
xx −7.986 7.024 0.037 1.562
xy −4.476 4.046 0.000 0.809
xz −8.193 8.501 0.006 1.701
yy −6.215 6.233 0.016 1.224
yz −6.793 7.866 0.008 1.462
zz −10.139 13.186 −0.052 2.301

Table 4.4: Residual (n > 250) gravitational
gradients from ground data (E).

The actual implementation of the integral algorithm for the two purposes – validation
and combination - strongly depends on quality of available ground data. Regarding the
validation of GRACE/GOCE gravitational gradients, available ground gravity information
proved to be of an insufficient quality over both study areas. The situation was better for
the Study area A (mid-oceanic ridge) where regional gravity disturbances derived from the
DTU10 model of the mean sea level could be applied. Table 4.3 gives the basic statistics
of gravitational gradients limited to degrees 2-250 evaluated from the DT10 gravity distur-
bance over the Study area A. Spatial maps of the values are then shown in Fig. 4.10.

Combination of the satellite gravitational gradients with ground data was also affected
by the absence of a good quality ground gravity data. The same algorithm was applied,
however, in this case the high frequency gravitational gradients were computed. Statistics
of the estimated gravitational gradients evaluated from the DTU10 model limited by the
minimum degree of 250 are then in Table 4.4. Their plots can be found in Figs. 4.11. Esti-
mated degree-banded gravitational gradients for either validation or combination purposes
were made available to all members of the consortium via the project data repository.
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Figure 4.10: Estimated degree-banded (2-250) gravitational gradients (15 arc-min).
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Figure 4.11: Estimated residual (251-720) gravitational gradients (15 arc-min).
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Over the Study area B the situation with ground data available to the consortium was
even more difficult. Generally, ground gravity data over the African continent are more
difficult to get. Officially distributed data by the Bureau Gravimetrique Internationale (BGI)
are relatively sparse or of poor quality in many areas. International oil companies involved
in geophysical exploration of Africa collected much better gravity data, however, they are
either unavailable or can be obtained at a relatively high price only. The situation can be
demonstrated on the case of the South African gravity data that are both freely available
and seem to have a reasonably good quality, see Fig. 4.12. Gravitational gradient derived
from ground gravity data (after their gridding and integral transformation) are shown in
Fig. 4.13 and satellite gradients (zz component only) are plotted in Fig. 4.14. Comparing
values of satellite gravitational gradients with those derived from ground gravity yielded
differences shown in Fig. 4.15. Differences between satellite gravitational gradients and
those synthesized directly from EGM2008 can be found Fig. 4.16. As the results of integral
transformation suffer from non-homogenous ground gravity distribution and edge effects, a
smaller area is South Africa was used. The difference are in Figs. 4.17 and 4.18, respectively.
The fit of satellite gradients with those derived from ground gravity is now at much better
level, just the effect of the ground gravity gap over Lesotho can nicely be seen at the right
edge of Fig. 4.17.

Figure 4.12: Ground gravity observations in South Africa (courtesy of BGI).
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Figure 4.13: Gravitational gradients de-
rived from ground gravity.

 

6˚ 8˚ 10˚ 12˚ 14˚ 16˚ 18˚ 20˚ 22˚ 24˚ 26˚ 28˚ 30˚ 32˚ 34˚ 36˚ 38˚ 40˚
−40˚

−38˚

−36˚

−34˚

−32˚

−30˚

−28˚

−26˚

−24˚

−22˚

−20˚

−18˚

−16˚

−14˚

−12˚

−10˚

6˚ 8˚ 10˚ 12˚ 14˚ 16˚ 18˚ 20˚ 22˚ 24˚ 26˚ 28˚ 30˚ 32˚ 34˚ 36˚ 38˚ 40˚
−40˚

−38˚

−36˚

−34˚

−32˚

−30˚

−28˚

−26˚

−24˚

−22˚

−20˚

−18˚

−16˚

−14˚

−12˚

−10˚

−1.0

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E

Figure 4.14: GRACE/GOCE gravita-
tional gradients.
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Figure 4.15: Differences between
GRACE/GOCE gravitational gradi-
ents and gravitational gradients derived
from ground gravity.
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Figure 4.16: Differences between
GRACE/GOCE gradients and gradi-
ents from EGM2008.
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Figure 4.17: Differences between
GRACE/GOCE gradients and gradi-
ents from ground gravity (detail).
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Figure 4.18: Differences between
GRACE/GOCE gradients and gradi-
ents from EGM2008 (detail).
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5 Topographic reduction of GGs (WP3)

In this chapter, forward modelling of gravitational gradients generated by mean topographic
masses, depth-dependent ocean water and continental ice is described. The GRACE/GOCE
gravitational gradients can be reduced for these known signal components prior their geo-
physical interpretation. The approach is based on the superposition principle of gravitation
which allows for decomposition of the observed gravitational signal into individual compo-
nents attributed to specific mass components such as the homogeneous reference ellipsoid
of revolution (GRS80 gravitational field), mean topographic masses outside the reference
ellipsoid, continental ice and depth-dependent ocean water mass density contrast. Remov-
ing these signals from the satellite GGs (within their available spectral limits), the residual
signal is suitable for geophysical interpretation, namely crustal modelling. Generally, the
reduced signal corresponds to mass density anomalies within the reference ellipsoid and
unmodelled mass densities within topography outside the ellipsoid. Small effects of mean
atmospheric masses are very small (approximately at the level of 1% of the topographical
effect, see Novák and Grafarend, 2006).

Available techniques for forward modelling of potential fields include namely spatial in-
tegration and spectral modelling. They both originate in the potential theory, namely New-
tonian theory of gravitation. In the project, three independent techniques based on spatial
integration, spectral modelling and their combination were applied. In such a way obtained
numerical results could mutually be compared and validated. The techniques include spec-
tral modelling based on spherical harmonic analysis and synthesis, classical numerical inte-
gration and application of the KIT spherical harmonic model created at the Karlsruhe Insti-
tute of Technology (Grombein et al., 2012) that can be downloaded available from the KIT’s
website. The three approaches are described in three subsections below. The combined ef-
fect of the three mass components on the combined GRACE/GOCE GGs will be referred to
in this report as the topographic effect from now on.

Additionally, the Earth’s crust is described by the global crustal model CRUST2.0 (Bassin
et al., 2000) that consists of the following global volumetric masses: soft and hard sediments
and upper, middle and lower crustal layers. The model consists of bounding (internal and
external) surfaces and respective laterally-varying volumetric mass density functions de-
fined in terms of mean values corresponding to an equiangular global grid in geocentric
spherical coordinates. The angular resolution of the model is 2 arc-deg that is equivalent to
spherical harmonic degree 90. Gravitational gradients of these mass layers were then also
computed; they represent yet another data product of the project. It is fair to say that the

71
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resolution of CRUST2.0 is not sufficient for a full reduction of GRACE/GOCE gravitational
gradients, however, recently the new CRUST1.0 model became available with a relevant
spatial resolution for this purpose.

5.1 Topographic effects by spectral modelling

The spectral forward modelling technique of the gravitational potential has traditionally
been used in geodesy and geophysics, e.g., Balmino et al. (1973); Lachapelle (1976); Rapp
(1981); Sünkel (1986). This method was modified and applied by (Novák and Grafarend,
2006) for evaluation of gravitational gradients at satellite altitudes generated by static topo-
graphic and atmospheric masses. This method facilitates mathematical formalism of com-
puting gravitational gradients of an arbitrary volumetric mass layer with a variable depth
and thickness while having laterally distributed vertical mass density variations. The three
mass components (topography, continental ice and ocean water) can be modelled as volu-
metric mass layers with a specific mass density distribution. In recent years, high precision
and high resolution global models of global topography became available. These models
are usually released in terms of discrete representation of the global height/depth func-
tion, however, its spectral representation is also available. Similar information is available
globally for crustal components such as soft and hard sediments and the crust down to the
Moho layer. In this project, global topography, bathymetry and continental ice sheets are
described by the global topographic model DTM2006 Pavlis et al. (2007). This global model
released along with EGM2008 (Pavlis et al., 2012) is a spherical harmonic model represent-
ing the solid Earth’s surface (topography over continents and bathymetry over oceans) with
the equiangular resolution of 5 arc-min (10 km at the equator). Required mathematical for-
mulations and numerical results were recently published in (Novák and Tenzer, 2013).

The apparatus of spherical harmonics will be applied in connection with the geocen-
tric spherical coordinate system defined in terms of the geocentric radius r, geocentric co-
latitude 0 ≤ θ ≤ π and longitude 0 ≤ λ < 2π. Let us assume that functions describing
geometry and mass density distribution within each layer can be expressed as a real square-
integrable function f as follows (SHS):

f(Ω) =
∑
n,m

fnm Ynm(Ω) , (5.1)

with the pair of angular coordinates – geocentric direction Ω = (θ, λ) and spherical har-
monics Y of degree n and order m. The abbreviated notation for the double summation is
introduced and used in this chapter (first summation is limited by degree nmax = 250)

∑
n,m

=

nmax∑
n=0

n∑
m=−n

.

Numerical coefficients fnm in Eq. (5.1) are then defined (SHA)

fnm =

∫
Θ
f(Ω′) Y ∗nm(Ω′) dΩ′ , (5.2)

with complex conjugates Y ∗ of the spherical harmonics, e.g., Arfken et al. (1985, Sect. 12.8).
The following abbreviated notation for surface integration over the full spatial angle Θ is
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used in this chapter: ∫
Θ

dΩ′ =

∫ 2π

0

∫ π

0
sin θ′ dθ′ dλ′ .

The functional model for the gravitational potential V is based on the Newtonian theory
of gravitation. Applying the superposition principle of gravitation yields the gravitational
potential generated by a closed volumetric mass layer, see Fig. 5.1, in the form

V (r,Ω) = G

∫
Θ

∫ re(Ω′)

ri(Ω′)
%(ξ,Ω′) L−1(r,Ω, ξ,Ω′) ξ2 dξ dΩ′ . (5.3)

In this equation, 2-D functions ri and re describe two closed star-shaped mutually not cross-
ing surfaces – interior (i) and exterior (e) – bounding mass density distribution % and G is the
(universal) gravitational constant. The inverse of the Euclidean distance L in Eq. (5.3) can
be expanded into a series of spherical harmonics (Heiskanen and Moritz, 1967, Sect. 1.15) as
follows:

L−1(r,Ω, r′,Ω′) =
1

r

∑
n,m

(
r′

r

)n 1

2n+ 1
Ynm(Ω) Y ∗nm(Ω′) , (5.4)

that originates in Legendre’s addition theorem.

Figure 5.1: Mass layer decomposition of the Earth.

The gravitational potential V , see Eq. (5.3), can be then computed if the mass density
distribution function % and the two closed bounding surfaces – ri and re – are known. In
connection with the reference ellipsoid GRS80 one gets the two bounding surfaces required
for evaluation of the topographic and ocean water gravitational gradients. For topography
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ri is the reference ellipsoid and re is the topographic surface. Obviously, over the oceans
the two surfaces coincide. The mean topographic mass density of 2670 kg m−3 is then used
as the mass density function %. In case of the ocean water, the gravitational gradients can
be computed similarly: in this case ri represents the ocean bottom and re is the reference
ellipsoid. A radially-varying (depth-dependent) mass density function % (Tenzer et al., 2012)
and a respective mass density contrast, see Eq. (5.6), are applied. The very same approach
was applied in case of the continental ice sheets. For this we used the 5 arc-min continental
ice-thickness data from the DTM2006 data sets derived from Kort and Matrikelstyrelsen ice-
thickness data for Greenland (Ekholm, 1996) and from the updated ice-thickness data for
Antarctica assembled by the BEDMAP project (Lythe and Vaughan, 2001).

The mass density distribution function can be modelled as follows (Tenzer et al., 2011):

%(r,Ω) =
∑
j=0

αj(Ω) r(Ω)j . (5.5)

Numerical coefficients αj can be determined by fitting the mass density model to avail-
able mass density distribution data with α0 representing the reference mass density. Their
numerical values for static atmospheric and sea water masses were given, e.g., by Novák
(2009); Tenzer et al. (2011). Numerical coefficients for sediment and crust mass density are
taken from CRUST2.0, for topography a constant mass distribution function is assumed.
Mass density contrasts defined as

∆%(r,Ω) = %0 − %(r,Ω) , (5.6)

were used for sea water masses, ice sheets, sediments and crust masses with the mean crust
mass density %0 of 2670 kg m−3 (Hinze, 2003).

Geometry of the two bounding surfaces is then defined in terms of spherical coefficients
Hnm provided by DTM2006

r(Ω) = R + H(Ω) = R +
∑
n,m

Hnm Ynm(Ω) . (5.7)

As the available gravitational gradients are spectrally limited, spherical harmonic represen-
tation of the gravitational potential V associated with a specific volumetric mass layer is
sought next. Substituting Eqs. (5.4) and (5.5) into Eq. (5.3) yields the gravitational potential

V (r,Ω) = G
∑
n,m

(
1

r

)n+1 1

2n+ 1
Ynm(Ω)

∫
Θ
Y ∗nm(Ω′) dΩ′

∫ re(Ω′)

ri(Ω′)
ξn+2

∑
j=0

αj(Ω
′)ξj dξ . (5.8)

The summation and integration in Eq. (5.8) can mutually be interchanged as long as the
series is uniformly convergent, cf. Leibnitz’s integral rule. Substituting for the radial integral
in Eq. (5.8)

F (Ω′) =
∑
j=0

αj(Ω
′)

∫ re(Ω′)

ri(Ω′)
ξj+n+2 dξ =

∑
j=0

αj(Ω
′)

[
ξj+n+3

j + n+ 3

]re(Ω′)
ri(Ω′)

, (5.9)

one gets a function that represents both mass density distribution (αj) and geometry (ri and
re) of gravitating masses under consideration. Performing its global spherical harmonic
analysis

Fnm =

∫
Θ
F (Ω′) Y ∗nm(Ω′) dΩ′ , (5.10)
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the gravitational potential can finally be synthesized as follows:

V (r,Ω) = GR2
∑
n,m

(
R

r

)n+1 4π

2n+ 1
Fnm Ynm(Ω) =

GM

R

nax∑
n,m

(
R

r

)n+1

Vnm Ynm(Ω) , (5.11)

where harmonic coefficients of the gravitational potential V are re-scaled to the geocentric
gravitational constant GM of the spherical Earth with the homogeneous mass density dis-
tribution %

GM =
4

3
π% GR3 . (5.12)

Maximum degree 250 of the spherical harmonic expansion in Eq. (5.11) approximately cor-
responds to the spectral content of the combined GRACE/GOCE gravitational gradients.

The spherical harmonic representation of the gravitational gradients then reads

Γ(r, θ, λ) = ∇⊗∇V (r, θ, λ) =
GM

R

∑
n,m

Vnm Znm(r, θ, λ) , (5.13)

with the tensor-valued harmonics

Znm(r, θ, λ) = ∇⊗∇
(

R

r

)n+1

Ynm(θ, λ) . (5.14)

The symbol ⊗ stands for the tensor (outer) product of two vectors. The transformation into
the Cartesian form of the tensor in LNOF reads

Γ(x, y, z) = ∇⊗ JT ∇V (r, θ, λ) + JT Γ(r, θ, λ) J , (5.15)

with the Jacobian J of transformation between the normalized spherical frame and LNOF
defined as follows (Koop, 1993):

Γxx =
1

r
Vr +

1

r2
Vθθ , (5.16)

Γyy =
1

r
Vr +

1

r2 tan θ
Vθ +

1

r2 sin2 θ
Vλλ , (5.17)

Γzz = Vrr , (5.18)

Γxy =
1

r2 sin θ
Vθλ −

cos θ

r2 sin2 θ
Vλ , (5.19)

Γxz =
1

r2
Vθ −

1

r
Vrθ , (5.20)

Γyz =
1

r2 sin θ
Vλ −

1

r sin θ
Vrλ . (5.21)
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5.2 Topographic effects by numerical integration

In this section, results based on spectral formulas (derived in the previous section) are com-
pared to those based on classical Newtonian integrals. Only the radial component of the
Marussi tensor will be considered. Spectral representation of the gradiometric tensor is
based on Eqs. (5.11) and (5.13), respectively. Gravitational gradients based on volume inte-
gration then read, see Eq. (5.3),

Γ(r,Ω) = G

∫
Θ

∫ re(Ω′)

ri(Ω′)
%(ξ,Ω′) Λ(r,Ω, ξ,Ω′) ξ2 dξ dΩ′ , (5.22)

with the tensor-valued integral kernel

Λ(r,Ω, ξ,Ω′) = ∇⊗∇ L−1(r,Ω, ξ,Ω′) . (5.23)

The radial component of the gradiometric tensor for a constant mass density function reads

Γrr(r,Ω) = G%

∫
Θ

∫ re(Ω′)

ri(Ω′)
D2
r L−1(r,Ω, ξ,Ω′) ξ2 dξ dΩ′ =

G%

r2

∫
Θ
I(r,Ω, ri, re,Ω

′) dΩ′ . (5.24)

Dr stands for the radial derivative. The integrand I in the surface integration can be evalu-
ated analytically, see (Wild and Heck, 2004, Eq. 3),

I(r,Ω, ri, re,Ω
′) =

∫ re(Ω′)

ri(Ω′)
D2
r L−1(r,Ω, ξ,Ω′) ξ2 dξ , (5.25)

that can be evaluated as follows:

I(r,Ω, ri, re,Ω
′) = − r3

e

2Le
+

r3
i

2Li
+ re Le − ri Li +

r3
e (r2 − r2

e)

2L3
e

− r3
i (r2 − r2

i )

2L3
i

+ 3r cosψ (Le − Li) + r2
(
3 cos2 ψ − 1

)
ln | Le + re − r cosψ

Li + ri − r cosψ
| . (5.26)

The distance functions are defined

Le =
√
r2 + r2

e − 2rre cosψ , (5.27)

and

Li =
√
r2 + r2

i − 2rri cosψ . (5.28)

Finally, ψ is the spherical distance between the two geocentric directions Ω and Ω′.
The spectral approach and numerical integration were compared against each other eval-

uating the radial topographic gradient. In case of the spectral approach, DTM2006 coef-
ficients up to degree and order 2160 were used. For global numerical integration, a global
grid of 5 arc-min mean elevations consistent with the DTM2006 model represented the input
data (discrete representation of the function re). Values of the radial topographic gradient
were computed over the parallel of 20 arc-deg south crossing partially the Pacific ocean and
the Andes (crossing the coastline of Chile close to the port city of Iquique) where large val-
ues of the topographic gradient occur. The parallel arc is 40 arc-deg long and values of the
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Figure 5.2: Radial topographic gradient: spectral approach (SHS/SHA) vs. global integra-
tion (integration).

radial topographic gradient were computed with the step of 15 arc-min. Numerical values
are plotted in Fig. 5.2 which shows the radial topographic gradient computed by the spec-
tral approach (SHS/SHA), global integration (integration) and their respective differences
(magnified by two orders of magnitude). Thus, over the parallel arc 161 values were com-
puted ranging from -0.92 to 5.77. The standard deviation of the differences is 0.001 E which
means that the two methods practically provide comparable results.

5.3 Topographic effects from the KIT model

Numerical tests were also performed by comparing values based on the spectral approach
described in the first section with values derived from the KIT model (Grombein et al., 2012).
The KIT (Karlsruhe Institute of Technology) model contains spherical harmonic coefficients
derived by spherical harmonic analysis of combined topographic, bathymetric and ice mass
gravitational effects. Thus, the combined gravitational gradients of these three masses can
be synthesized at the satellite altitude as well as at any other location outside the Earth’s
masses.

Gravitational effects of the three mass components under consideration were derived
one by one using the volume integration based on analytical formulas defined for simple
volumes elements. In this particular case, tesseroids located approximately at the GRS80
reference ellipsoid, i.e., for latitude-dependent radii, were applied. Computing their re-
spective gravitational effects by analytical formulas on a geocentric sphere at the altitude
of 20 km above the mean Earth’s radius, respective spherical harmonic coefficients up to
degree and order 1800 were derived by their spherical harmonic analysis. For the continen-
tal ice sheets, the global model DTM2006.0 provided three heights that were derived from
the BEDMAP project: (i) distance from MSL to ice-air-interface, (ii) distance from bottom
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Figure 5.3: Radial topographic gradient: spectral approach (SHS/SHA) vs. KIT model (KIT).

side of ice to ocean floor and (iii) distance from ice-air-interface to ice-water-interface (ice
thickness). With these three values the geometry of all layers with their appropriate mass
densities were modelled (Grombein, 2014, personal communication).

For comparison gravitational gradients generated by topography, bathymetry and conti-
nental ice sheets computed with the spectral formulas, see Section 4.1, had to be combined
in one gravitational gradient. Figure 5.3 shows values of the radial gravitational gradient
derived from the KIT model (KIT), respective values computed by the spectral approach
combining the radial gravitational gradients of the three mass components (SHS/SHA) and
their differences. The differences remain below 0.01 E over the parallel arc. Global maps
of the topographic effect on GRACE/GOCE GGs computed at the mean satellite altitude is
shown in Fig. 5.4 and the differences between values based on the KIT model and spectral
modelling are shown in Fig. 5.5 with the mean difference of 0.012 E and the standard devia-
tion of 0.048 E. Finally, the respective histogram of the differences can be seen at Fig. 5.6.

The values of the two different modelling techniques match quite well considering the dif-
ferent approaches used for their evaluation: 1- masses are represented by tesseroids per each
grid element, gravitational effects are computed by integration and their respective spheri-
cal harmonic coefficients are derived by spherical harmonic analysis (KIT) vs. 2- masses are
represented by a continuous volumetric layer, spherical harmonic coefficients of functions
defining their geometry and mass density distribution are derived by spherical harmonic
analysis and respective gravitational effects are finally evaluated by spherical harmonic syn-
thesis (SHS/SHA).

5.4 Results and summary – topographic effects

Once the spherical harmonic coefficients Vnm of the gravitational potential generated by a
particular Earth’s mass component are estimated, see Eq. (5.8), its gravitational gradients
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Figure 5.4: Radial gravitational gradient de-
rived from the KIT model (E).
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Figure 5.5: Differences between radial GGs
based on KIT and spectral modelling (E).
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Figure 5.6: Histogram of differences between radial GGs based on KIT and spectral mod-
elling (mE).

can easily be synthesized through Eq. (5.14). Gravitational gradients generated by the ho-
mogenous topographic masses are shown in Figs. 5.7, by the depth-dependent ocean water
in Fig. 5.8 and by the continental ice masses in Figs. 5.9. Only the diagonal components of
the gradiometric tensor are presented in the report which are ordered as Γxx, Γyy and Γzz in
all figures. Statistical values of the computed gravitational gradients can be found in Tables
1-3. Note that the (frequency dependent) accuracy of GOCE gravitational gradients is at the
level of 5 mE (Gruber et al., 2010).

All gravitational gradients were computed at the equiangular 0.5 arc-deg global grid of
the spherical coordinates at the elevation of 250 km that approximately corresponds to the
orbital elevation of the GOCE satellite. The spectral content of the computed values is lim-
ited by maximum SH degree 250. Residual (corrected and stripped) gravitational gradients
are defined as follows

Γres(r, θ, λ) = δΓ(r, θ, λ) −
∑
i

Γi(r, θ, λ) , (5.29)

with the summation index i representing the i-th mass component. Gravitational gradients
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reduced for the effect of the GRS80 reference field, topography, depth-dependent ocean wa-
ter and continental ice are plotted at Figs. 5.10.

parameter min max mean sigma
Γrr −1.450 6.930 0.266 0.964

Γθθ −4.701 2.486 0.006 0.482

Γλλ −7.922 6.014 0.000 0.671

Γrθ −6.057 4.498 0.115 0.585

Γrλ −3.909 3.835 0.000 0.520

Γθλ −7.882 7.276 0.000 0.573

Table 5.1: Gravitational gradients generated by topography (E).

parameter min max mean sigma
Γrr −1.613 0.341 −0.056 0.258

Γθθ −0.586 0.712 −0.002 0.120

Γλλ −2.004 2.303 0.000 0.188

Γrθ −1.180 0.670 −0.038 0.146

Γrλ −1.139 0.946 0.000 0.137

Γθλ −1.854 2.561 0.000 0.156

Table 5.2: Gravitational gradients generated by continental ice (E).

parameter min max mean sigma
Γrr −2.040 4.671 0.867 1.368

Γθθ −2.606 2.168 −0.002 0.676

Γλλ −3.499 3.128 0.000 0.678

Γrθ −3.469 4.120 −0.060 0.838

Γrλ −3.990 3.696 0.000 0.737

Γθλ −2.641 3.522 0.000 0.471

Table 5.3: Gravitational gradients generated by bathymetry (E).
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Figure 5.7: Topographic gravitational gradi-
ents Vxx, Vyy and Vzz (E).
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Figure 5.8: Bathymetric gravitational gradi-
ents Vxx, Vyy and Vzz (E).
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Figure 5.9: Continental ice sheets gravita-
tional gradients Vxx, Vyy and Vzz (E).
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Figure 5.10: Residual gravitational gradi-
ents Vxx, Vyy and Vzz (E).
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5.5 Gradient effects of internal mass structures

There are other Earth’s mass components for which global models became available in re-
cent years. Besides topography and ice sheets, the global crustal model CRUST2.0 (Bassin
et al., 2000) consists of the following global mass layers: soft and hard sediments, upper,
middle and lower crusts. The model was compiled from seismic reflection data and de-
tailed data of ice and sediment thickness. The angular resolution of the model is 2 arc-deg
that is equivalent to SH degree 90. The model consists of bounding surfaces and respec-
tive volumetric mass densities, see Fig. 5.11. Thus, the application of the spectral approach
is straightforward: one computes SH coefficients that correspond to products of geometric
and mass density information for each layer within the global crustal model. In this sec-
tion we present numerical results obtained by spectral modelling technique. However, one
has to remember current spectral limitations of these values. Unfortunately, the new crustal
model CRUST1.0 was just released in July 2013, too late to be applicable for the purpose of
the project.

Figure 5.11: Simplified layered model of the Earth’s crust.

Values of the gravitational gradients (diagonal entries only) due to static atmospheric
masses are shown in Fig. 5.12. Their values are small and largely correlated with the surface
of the Earth’s that represents the lower boundary. The upper limit for the atmosphere is a
geocentric sphere with radius given as a sum of the mean Earth’s radius + 50 km. The atmo-
spheric mass density above 50 km becomes negligibly small. The atmospheric mass density
function was taken from the US Standard Atmosphere approximated for the purpose of nu-
merical calculations by the model described in (Novák 2000). Gravitational gradient effects
due to CRUST2.0 soft sediments are plotted in Fig. 5.13 and due to CRUST2.0 hard sedi-
ments in Fig. 5.14. Values of these effects nicely correlate with the location of soft and hard
sediments as described by the CRUST2.0 model. We recall that the sedimentary rock cover
in the regional study over the Congo basin (Study area B) was one of the research topics
of the project. However, for this purpose available regional sediment models with much
higher spatial resolution and reliability were used. Gradient effects due to the CRUST2.0
upper crust are shown in Fig. 5.15, due to the CRUST2.0 middle crust in Fig. 5.16 and due to
the CRUST2.0 lower crust in Fig. 5.17.
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Geophysical interpretations of the computed values is beyond the scope of this chapter.
However, it should be stated that CRUST2.0 values suffer from both low spatial resolution
and inaccuracies due to insufficient data available for CRUST2.0 compilation. The newly
released CRUST1.0 model hopefully improve the global description of the crustal masses
which still has to be validated by its careful analysis and applications in various geophysical
studies.
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Figure 5.12: Atmospheric gravitational gra-
dients Vxx, Vyy and Vzz (E).
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Figure 5.13: Soft sediments gravitational
gradients Vxx, Vyy and Vzz (E).
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Figure 5.14: Hard sediments gravitational
gradients Vxx, Vyy and Vzz (E).
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Figure 5.15: Upper crust gravitational gra-
dients Vxx, Vyy and Vzz (E).
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Figure 5.16: Middle crust gravitational gra-
dients Vxx, Vyy and Vzz (E).
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Figure 5.17: Lower crust gravitational gra-
dients Vxx, Vyy and Vzz (E).
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5.6 Output summary

For geophysical interpretations of GRACE/GOCE gravitational gradients, various cut-off
degrees must be taken into account. Spectral forward modelling as well as the KIT spec-
tral model allow for evaluation of gradient effects that are limited to a certain window of
spherical harmonic degrees. In general, topographic gradients can be computed to degrees
at the level of 10,000 if the high resolution global models (ETOPO1, SRTM etc.) are con-
sidered. With respect to GRACE/GOCE gradients, the required upper limit represents ap-
proximately spherical harmonic degree 250. This can safely be computed from the available
DTM2006. The spectral modelling technique results in values of gravitational gradients
computed separately by individual mass components. Moreover, gravitational gradients
generated by sediments and three crustal layers of CRUST2.0 were also computed up to
spherical harmonic degree 90 by this approach.

Results of the spectral modelling techniques were successfully validated by numerical
integration. Comparing global results of spectral modelling with those based on the KIT
model, differences up to 0.2 E were detected in some coastal regions. This effect may have
some effect on investigations within the Study area A (Reykjanes Ridge). Over the Congo
basin investigated in the Study area B, the two approaches provided comparable results.

The KIT model was used for evaluation of the combined topographic effects (topography,
continental ice, ocean water) V top

xx , V top
xz , V top

yy and V top
zz for the following reference altitudes

and degree bands:

• MOS km for n ∈ {[0, 8]; [0, 12]; [0, 20]} and n ∈ {[9, 1800]; [13, 1800]; [21, 1800]},

• MOS− 150 km for n ∈ {[0, 8]; [0, 12]; [0, 20]} and n ∈ {[9, 1800]; [13, 1800]; [21, 1800]},

• MOS− 250 km for n ∈ {[0, 8]; [0, 12]; [0, 20]} and n ∈ {[9, 1800]; [13, 1800]; [21, 1800]}.

In Appendix A.5, the plot of V top
xx can be found; the other components were computed anal-

ogously but were not plotted here. The effects for each mass component computed sep-
arately (topography, ocean water, continental ice, soft and hard sediments, upper, middle
and lower crust) were computed up to the spatial resolutions given in terms of maximum
spherical harmonic degree 250 (topography, continental ice, ocean water) and 90 (sediments
and crustal layers), respectively.
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The initial geophysical model over the Study area A (Reykjanes Ridge) is the model for
cooling lithosphere of the mid-ocean ridge from Turcotte and Schubert (2002). It predicts the
thickness of the lithosphere and the mass density as a function of distance from the ridge.
With the mass densities predicted by this model gravitational gradients are computed as
explained in the next section.

Figure 6.1: Location of minimum
bathymetry on parallels across the
Reykjanes Ridge.

Figure 6.2: Locations of minimum
bathymetry in the area of the Reykjanes
ridge, and interpolation by a linear or
quadratic polynomial.

First the location of the ridge needs to be known so that the distance to the ridge can be
computed for points on a global grid. The location of the ridge can be determined from the
bathymetry in the region. Here the ridge is defined as the smallest depth that is encountered
when moving along a parallel across the ridge. The resulting points are shown in Figure 6.1.
To obtain a geographical location of the ridge at regular intervals, a polynomial is fitted
through these points, see Fig. 6.2.

The method, that is used to compute gravitation from a known mass density distribution,
requires a global grid. Therefore the ridge is extended by 15 arc-deg to reduce edge effects in
the area of the ridge itself where model predictions are compared to GRACE/GOCE gravi-
tational gradients. Comparisons take place along a line perpendicular to the ridge. Such a
line is created by taking the negative slope of the blue line in Fig. 6.2. It should cut across
a section where the mid-ocean ridge is clearly distinguishable and preferably be away from

89
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the influence of the topography and hotpot of Iceland. The selected location is shown in
Fig. 6.2.

Figure 6.3: Location of a line perpendicu-
lar to the ridge that is used for compar-
ison of model predictions and observa-
tions.

Figure 6.4: Bathymetry from GEBCO and
the model of equation with two different
values for the spreading rate.

Bathymetry predicted by the cooling-plate model (Turcotte and Schubert, 2002, Eq. 4-209)
is given as follows:

w =
2 ρm αv (T1 − T0)

ρm − ρw

√
κt

π
, (6.1)

where ρm is the average mass density of the mantle, ρw is the mass density of ocean water,
αv is the volumetric coefficient of thermal expansion, T1 is the mantle temperature, T0 is the
surface temperature, κ is the thermal diffusivity and t is the age of the lithosphere. Initial
values for the parameters are given in Table 6.1.

Table 6.1: Parameters for the cooling-plate model.

Parameter Value
∆T = T1 − T0 1300 K

ρm 3300 kg m−3

ρw 1100 kg m−3

κ 10−6 m2 s−1

α 3 ×10−5 K−1

In order to test the bathymetry model it is compared with the bathymetry from echo
soundings from the Generic Bathymetric Chart of the Oceans (GEBCO) in Fig. 6.4. It can
be seen that the model represents the true bathymetry well up to the point where the true
bathymetry slopes up and the cooling plate model does not apply anymore. The model
bathymetry is too shallow at the location of maximum depth. The shape of the bathymetry
can be changed by several of the parameters in Eq. (6.1). Here we investigate the influence
of the spreading rate. The other parameters are discussed in later sections.
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The performance of the 2-D model can be compared with the observed geoid anomaly, as
there is an expression for the geoid anomaly for the cooling plate model:

N =
−2πGρm αv (T1 − T0) κ

g

[
1 +

2ρm αv (T1 − T0)

π (ρm − ρw)

]
. (6.2)

The geoid anomaly varies linearly with the age, and, because the spreading rate is constant,
also with the distance. For the parameters in Table 6.1 the model is plotted in Fig. 6.5.
Also shown is the geoid anomaly from the global gravitational model GOCO03S (Mayer-
Gürr et al., 2012) for different cut-off degrees. If spherical harmonic coefficients below the
degree 8 are removed, there is a long-wavelength signal visible which is not coming from the
spreading ridge but likely from the Iceland hotspot, a deep mantle signal. However, when
degrees below 12 or below 20 are left out, the signal of the ridge is visible and corresponds
well to the predicted geoid anomaly from the model. This gives confidence in the 2-D model
for application to the Reykjanes Ridge, and also shows that the degree 12 or 20 is a good cut-
off degree for comparing the model and observations.

Figure 6.5: Geoid anomaly for the model
of the spreading ridge compared to
the geoid anomaly from the GOCO03S
model interpolated at the red line of
Fig. 6.3.

Figure 6.6: Figure 4b from Müller et al.
(2008). Half-spreading rate (mm/year) in
the Atlantic ocean.

The true spreading rate can be obtained from Müller et al. (2008) who calculated spreading
rates from isochrones that are visible as magnetic anomalies, see Fig. 6.6. For the location of
the red line in Fig. 6.3 the half-spreading rate is 1.2 cm/year. Inserting this value in equation
yields the green line in Fig. 6.4. The fit between the modelled and true bathymetry is slightly
worsened.

Global grids were created with the equiangular resolutions of 1, 0.5, 0.25 and 0.125 arc-
deg. For the points on these grids the minimum great circle distance to the ridge is deter-
mined by the Haversine formula:

d = rE sin−1

√(
∆ϕ

2

)2

+ cosλridge cosλgrid sin

(
∆ϕ

2

)2

, (6.3)
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with λridge the longitude of the ridge and ∆λ the difference in longitude between the compu-
tation point and the ridge. The distance is shown in Fig. 6.7 and the bathymetry is computed
according to Eq. (6.1)

Figure 6.7: Minimum distance between
points on the 1 arc-deg grid and the ex-
tended ridge (denoted by the red line).

Figure 6.8: Model bathymetry according
to Eq. (6.1).

All interpolations are performed with the griddata routine of MATLAB, or the interp2
routine if both grids are regular. To check the gridding and computation of the distance, the
difference between the bathymetry for the 3-D model and for the 1-D model is shown in
Fig. 6.9. Differences arise close to the centre of the ridge because of the limited grid spacing
of the grid (0.125 arc-deg).

Figure 6.9: Bathymetry for the 1-D model
and the 3-D model averaged onto a line
perpendicular to the ridge.

Figure 6.10: Schematic drawing of layers
in the cooling-plate model. The depth of
the mantle is assumed to be 1 km below
the maximum depth of the lithosphere.

6.1 Layering of the cooling-plate model

The layers, that are necessary to make up the cooling plate, are drawn in Fig. 6.10. The depth
of the ocean can be calculated with Eq. (6.1). Within the cooling plate, the temperature is
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given as (Turcotte and Schubert, 2002, Eq. 4-124)

T1 − T0 = erfc

(
y

2
√
κx/u

)
, (6.4)

in which ”erfc” is the complementary error function. The mass density is calculated as the
increase with respect to the mantle mass density as a result of cooling by T1−T , see (Turcotte
and Schubert, 2002, Eq. 4-205; Haxby and Turcotte, 1978)

ρ = ρm [ 1 + αv (T1 − T ) ] . (6.5)

The lower boundary of the cooling plate is a geotherm so that for the thickness of the litho-
sphere holds:

yL = 2 erfc(θ)
√
κx/u , (6.6)

with the ratio θ = (T − T1)/(T1 − T0). Turcotte and Schubert define the bottom of the litho-
sphere as a geotherm where the temperature difference T−T1 is 10% of the total temperature
difference; hence, θ is 0.1.

The temperature is depth dependent, but for the spectral method a finite number of layers
is required. If the bottom of the lithosphere is defined, then the lithosphere is divided in two
layers. For each layer the temperature is calculated at the midpoint of the layer according to
Eq. (6.4). The density according to Eq. (6.5) is assumed to hold for the entire layer. This is a
simplification compared to the depth-dependent temperature model, the validity of which
is later checked.

When the lithosphere is divided by ”NumDiv” layers, for the temperature difference,
from Eq. (6.4) can be derived

T1 − T = (T1 − T0) erfc(θ)
erfcinv(θ)

4 NumDiv
, (6.7)

where ”erfcinv” is the inverse complementary error function. In the MATLAB routines the
calculation of the temperature for each layer is checked by this equation.

Figure 6.11: Difference between the 4th order term and 3rd order term, see Eq. (6.9).
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6.2 Forward modelling of gravitational gradients

To compute gravitational gradients the forward modelling approach is used. Here the equa-
tions are listed which are used in the MATLAB program written for this purpose. The grav-
itational potential can be written as, see (Novák, 2009, Eq. 18):

V (r,Ω) = 4πGR2 ρ

nmax∑
n,m=0

(
R

r

)n+1 1

2n+ 1
Fnm Ynm(Ω) , (6.8)

where (r,Ω) are the geocentric spherical coordinates of the computation point, R the radius
of the geocentric reference sphere, G the Newtonian gravitational constant and M the mass
of the Earth. The geometry of the surface at the top of the layer and at the bottom of the
layer is approximated by a binomial expansion. To the third order, it reads (Novák, 2009,
Eq. 20)

Fnm =
Unm − Lnm

R
+ (n+ 2)

U2
nm − L2

nm

2R2
+ (n+ 2) (n+ 1)

U3
nm − L3

nm

6R3
, (6.9)

where Unm and Lnm are the spherical harmonic coefficients of the upper and lower bound-
ing surfaces of a particular mass layer, relative to a reference sphere with radius R.

The computation proceeds backward from Eq. (6.9) to Eq. (6.8): (i) geometry of the layer is
transformed into spherical harmonic coefficients by the global spherical harmonic analysis,
(ii) coefficients Fnm are calculated with Eq. (6.9) and (iii) global spherical harmonic synthesis
is performed according to Eq. (6.8).

Equation (6.9) is an approximation and even though its convergence is fast, it needs to
be tested how accurate the approximation is. Novák and Grafarend (2006) computed the
degree variance of the linear, quadratic and cubic terms, showing their relative importance.
Here the effects of the 4th order term compared to the 3rd order term is shown in Fig. 6.11.

6.3 Tests of the forward modelling code

A comparison is done between the MATLAB code developed for this project and an in-
dependent code, see Fig. 6.13. As input data is used two layers from the EPcrust model
Molinari and Morelli (2011), the mass density of 1000 kg m−3 with three terms in the bino-
mial expansion. The differences are small (though not at the numerical error of the software)
validating that the codes are equivalent for practical purposes.

An easy check against a simple analytical solution is for the case of a layer with constant
thickness of 10 km and mass density of 5500 kg m−3. The gravitational effect computed
with the forward modelling approach is around 4631.5 mGal, which agrees well with the
spherical Bouguer correction:

δg = 4πGρh = 4π × 6.67× 10−11 × 5500× 103 = 4613 mGal .

The second test is performed by adding two layers that are shown in Fig. 6.15. These two
layers are the bathymetry and a crustal layer with constant bottom depth. The signal is up
to 7200 mGal, but the sum of the two layers adds up to the same value as in Fig. 6.14.
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Figure 6.12: Effects of the order in the binomial approximation at different altitudes. The
differences between two subsequent orders are shown for a synthesis of the topography.

(a) (b)

Figure 6.13: The signal used in the comparison (left) and the differences (right).

6.4 Model results

Figure 6.16 shows the contribution from the bathymetry, lithosphere layers and the man-
tle layers. Bathymetry is the smallest signal, the signal from the mantle is the largest. Its
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Figure 6.14: Gravitational effect from a layer with constant thickness of 10 km (mGal).

(a) (b)

Figure 6.15: Schematic of two layers used in the test discussed in the text (left) and litho-
sphere thickness (right).

positive mass in the centre of the ridge needs to be compensated by a negative contribu-
tion from the sum of the top and bottom layers in the lithosphere to yield the total signal in
Fig. 6.17. Therefore the total gravitational signal is sensitive to errors in the modelling as it is
the sum of two large and opposite signals. The comparison between the geophysical model
and the GOCO and in-orbit gradients is shown in Fig. 6.18. There is a good agreement be-
tween the in-orbit GRACE/GOCE gravitational gradients and the GOCO03S model, but the
geophysical model signal is too large. The following sections discuss improvements in the
geophysical model and changes in the model parameters to fit the observed gradient data.

6.5 Model improvements

The improvements in the geophysical model discussed in this section are based on appli-
cation of more than two layers in the lithosphere, larger maximum degree and increased
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(a) (b)

(c) (d)

Figure 6.16: Tzz from the 4 model layers at 250 km altitude in E.

spatial resolution. The first improvement in the model is to subdivide the lithosphere in
more than two layers and to better simulate the continuous temperature depth variation
in the analytical model. Gravitational gradients for two and three divisions are shown in
Fig. 6.19. The differences are not visible, therefore two lithosphere layers continue to be
used in the following to reduce computation time.

In Figure 6.20, the maximum spherical harmonic degree is varied with the spatial reso-
lution of the input layers fixed at 0.25 arc-deg. From the computational point of view, the
smaller degree is preferred. The distance between the curves decreases for increasing maxi-
mum degree indicating that convergence is occurring. At the altitude of 250 km, the curves
for the degrees 150 to 300 overlap indicating that the maximum degree of 150 is sufficient.
At the 100 km altitude there is a visible difference. It is discussed in the following section
whether the difference is significant. At the surface the differences are non-negligible.

The spatial resolution is varied in Fig. 6.21 for the maximum degree of 179. At fixed max-
imum degree, the spatial resolution of the density layers does not result in large differences.
It is more important to control the deviations in Fig. 6.20.

6.6 Model parameters

So far the input parameters for Eq. (6.1) from Turcotte and Schubert (2002) are used. Since
this is a general model for the mid-ocean ridge, some parameters might be less suitable for
the Reykjanes Ridge. This section discusses in particular temperature and density under-
neath a mid-ocean ridge and presents some values from the literature.
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Figure 6.17: Total signal from the geophysical model at 250 km altitude, sum of the signals
in Fig. 6.16 but with the first 19 degrees removed (E).

The temperature between mantle and surface can be found in several studies which are
listed in Table 6.2. The mantle temperature can also be inferred from seismic models, see

Table 6.2: Mantle temperature found in literature.

Mantle temperature Reference
1200◦ C (Marquart et al., 1999)
1330◦ C (Poore et al., 2011)
1637◦ C (Putirka, 2005)

Fig. 6.22. However, such a conversion carries too much uncertainty and the mass densities,
that are inferred for the crust and the mantle, are generally not in a good agreement with
gravitational measurements (Root et al. in prep.).

6.7 Mantle density

Some values for the mantle mass density are listed in Table 6.3. Some values are inferred,
others are merely selected as a reference mass density in a model. Their variation is much
smaller than that of the mantle temperature.

From model simulations it is found that values of the mantle temperature and mass den-
sity varying within their uncertainty bounds have a small influence on the resulting gravi-
tational effect. Thus, the mantle temperature and mass density are constrained reasonably
well. However, the coefficient for the thermal expansion and the diffusivity coefficient have
a large influence on the shape of the basin, and are not well constrained. Some values found
in literature are listed in Table 6.4. In the following sections, these coefficients are considered
the free parameters of the model.



6.7 Mantle density 99

(a) (b)

Figure 6.18: Tzz gradient from the geophysical model, GOCO03S and GRACE/GOCE in-
orbit gravitational gradients along a line perpendicular to the ridge; at MOS (left) and at
MOS-150 km (right). Parameters are as in Table 6.1, the cut-off degree is 20 and the maxi-
mum degree is 250.

Table 6.3: Mantle mass density found in literature.

Mantle mass density Reference Comment
3215-3240 kg m−3 (Jacoby et al., 2007) best-fit to gravity data

3300 kg m−3 (Ito et al., 1999) reference in a model
3300 kg m−3 (Bonatti et al., 2003)

3150 ± 60 kg m−3 (Menke, 1999) (as found in Kelley, 2009)

Table 6.4: Values for the thermal expansion and diffusivity coefficients from literature.

α [K−1] κ [m2 s−1] Reference
1.6 to 3 × 10−5 10−5 (Turcotte and Schubert, 2002)

0.56 × 10−6 to 1.1 × 10−6 (Doucoure and Patriat, 1992)

A good fit between the geophysical model and any global gravitational model (such as
GOCO03S) can be obtained if the thermal expansion and thermal diffusivity coefficients are
decreased with respect to the values used in the generic cooling-plate model of Turcotte and
Schubert (2002).

The geophysical model is compared to the GOCO03S global gravitational model and the
(downward continued) gravitational gradients in Fig. 6.23. The long-wavelength differences
can be mitigated by a larger cut-off degree, or by simply removing a mean across the line.
To obtain the good fit the thermal expansion coefficient had to be reduced by the factor
of 3 and the thermal diffusivity by the factor of 2. The lowered values are on the edge of
what is found in the literature cited in Table 6.4. It is likely that the two coefficients absorb
some of the other model errors, but with all the values within physically plausible values,
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(a) (b)

Figure 6.19: Tzz at 250 km altitude (left) and 0 km altitude (right) for the GOCO03S model,
and the geophysical model with two (red line) or three (black line) layers in the lithosphere.

(a) (b) (c)

Figure 6.20: Tzz for varying maximum spherical harmonic degrees at 250 km (a), 100 km (b)
and 0 km (c) altitude.

the model proves to be satisfactory to investigate sensitivity of the GOCE gradient data to
model parameters. The thermal expansion coefficient is now: 1.5 × 10−5 K−1 (half the TS
value), and the thermal diffusivity coefficient is 0.6× 10−6 m2 s−1.

6.8 Could GOCE gradients sensibly be used in geophysical mod-
els?

In order to find out if GOCE gradients are useful for geophysical modelling, we constrain
the free parameters in the geophysical model for the Reykjanes Ridge. A grid search is per-
formed to find the parameters for which the model best fits the gradients from the GOCO03S
model at satellite altitude. As free parameters we select the thermal expansion coefficient
and the diffusivity as there are the most important parameters to constrain the shape of the
geotherms. In the absence of meaningful error estimates (that do exist for the global grav-
itational model but not for the in-orbit gradients) the RMS is defined as quality parameter
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Figure 6.21: Tzz for varying spatial resolutions at the maximum spherical harmonic degree
of 179 and at the 0 km altitude.

Figure 6.22: Temperature distribution at a cross-section of the Reykjanes ridge predicted
from a shear wave velocity model (from Delorey et al., 2007).

instead of the chi-squared misfit:

RMS =

√
1

N
(o−m)2 , (6.10)

where o is the observation, m is the model prediction and N is the number of observations.
We use all observations along the perpendicular line across the ridge in Figure 6.3. The RMS
is shown in Figure 6.24 for the four accurate gradients that can be measured with GOCE.
The maximum degree 150 is in agreement with Figure 6.20.

In the contour plot the darkest contour line encompasses the combination of α κ which
gives the smallest RMS values. There is a trade-off between α and κ: a small value for α
requires a small value for κ and vice versa. At small values of α the contour lines are nearly
vertical, indicating that the best fit is not sensitive any more to κ.

The fact that non-trivial conclusions can be drawn demonstrates that GOCE gradients can
be used in geophysical modelling. In constraining the geophysical model, the model with
minimum RMS is searched. Does a difference in the RMS mean that there is more infor-
mation in the observed gradients than in the global gravitational model? To answer that
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(a) (b)

(c)

Figure 6.23: Tzz from the geophysical model, GOCO03S and the GRACE/GOCE gradients
at three different altitudes. The thermal expansion coefficient is 1× 10−5 K−1 and diffusivity
is 1 × 10−6 m2 s−1. The cut-off degree is 20.

question requires information about errors in the data and uncertainty (or at least the num-
ber of degrees-of freedom) in the model. The uncertainty in the model consists of all the
variation in the model predictions that arises from the variation in the input (the fixed pa-
rameters, all parameters except for α and κ), and all approximations inherent in the model.

To estimate the uncertainty due to model input uncertainty, the vertical gravitational gra-
dient is computed for fixed α and κ, and variation in the input parameters. Temperature and
density are varied according to ranges in Table 6.2 and Table 6.3. Θ is varied from 0.03 to 0.3,
the minimum degree is varied from 5 to 25, the maximum age of the ridge is varied from
60 to 100 million years (for the spreading-rate of 1 cm/year this translates into a maximum
distance of the ridge of 600 to 1000 km), spreading rate of 1 to 1.2 cm/year. The resulting
gravitational gradients at MOS and at 100 km altitude are shown in Figure 6.25. The vari-
ation represented by the spread in the curves is a conservative estimate of the uncertainty
in the model predictions due to model input error. It is conservative because the bounds on
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(a) (b)

(c) (d)

Figure 6.24: RMS between modelled gradients and gradients from GOCO03S at MOS for
different values of the thermal expansion coefficient α and thermal diffusivity κ. The maxi-
mum spherical harmonics degree is 150.

(a) (b)

Figure 6.25: Tzz computed at satellite level (left) and at 100 km altitude (right) with varia-
tions in model input parameters except α and κ.

some of the parameters (temperature) are probably tighter than the range used here. Still
the improvements coming from the GOCE global gravitational models or the GOCE derived
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gradients should be seen in the light of these uncertainties.

6.9 Summary and conclusions

The Reykjanes Ridge was selected as a study area because it has a distinct and sharp grav-
itational signal and because of the outstanding geophysical questions there. To model the
gravity from the ridge, the 2-D cooling-plate model for oceanic lithosphere from a geody-
namic textbook (Turcotte and Schubert, 2002) is used. The model provides a good fit to a
cross-section of the bathymetry of the Reykjanes Ridge observed by echo-sounding and to
the gravity anomaly from global gravitational models along the same cross-section.

A 3-D model is created by computing the bathymetry according to the 2-D model for a
rectangular grid based on the distance from the center of the ridge. The density as a function
of depth is discretized in two or three layers order to use the forward gravitational model
for a layered Earth. With this forward gravitational model based on spherical harmonics the
gravitational gradients at any altitude can be computed. Free parameters in the model are
selected to be the thermal expansion coefficients and the thermal diffusivity.

A good fit with the gravity data is achieved when the free parameters are lowered with
respect to the textbook values, but still within the range of acceptable values found in the
literature. Best fitting parameters can be obtained by misfit search for each of the four mea-
surable components of the gravitational gradient tensor. The uncertainty in the model is
quantified by varying all other model input parameters within their uncertainty range. The
differences in fit can be compared against this uncertainty. With these tools conclusions
about the contribution of GOCE and the gravitational gradients to the study of the mid-
ocean ridge are drawn in the Impact Assessment Report.
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7.1 Inverse gravimetric problem

The determination of the mass density distribution of the Earth from gravity data is called
the inverse gravimetric problem. It is well known that this problem is an ill-posed problem
in the Hadamard’s sense which will transparently be demonstrated hereafter. A unique and
stable solution to this problem may be obtained by introducing a priori mass density distri-
bution and requiring that an anomalous density fulfils a minimum-norm condition. It will
be shown, for instance, that the minimization of the L2-norm of anomalous density results
in a harmonic density distribution. We should note that this section shortly summarizes the
theoretical results on the property of the inverse gravimetric problem found by theoretical
geodesists and geophysicists in the 80’s and 90’s of the last century.

7.1.1 Hadamard’s criteria

Consider the Newton’s law of gravitation for the gravitational potential V in the form

V (P ) = G

∫
B

%(Q)

dPQ
dVQ , (7.1)

where B is the Earth’s body, % is the volume-mass distribution inside B, % ∈ L2(B), P
denotes a computation point, Q a dummy point of integration, dPQ the distance between P
and Q and G is the gravitational constant.

The inverse gravimetric problem (IGP) consists of finding such a mass density distri-
bution % in B which generates the (known) gravitational potential V outside the Earth.
The inverse gravimetric problem is an ill-posed inverse problem since it violates three
Hadamard’s criteria which read as follows:

• Existence. A solution for a mass density distribution is not given for every left-hand
side V . The gravitational potential V has to be harmonic outside the Earth which may
be violated by measurement errors.

• Uniqueness. Only the harmonic part of the mass density function can uniquely be re-
constructed, whereas the orthogonal complement (in the sense of the L2 space), the
so-called anharmonic part, has the external gravitational potential equal to 0 and,
therefore, does not leave any trace in gravity measurements. This is the most serious
problem of IGP.

105
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• Stability. The mass density does not continuously depend on the gravitational poten-
tial. The instability has an exponential character, see, e.g.,
(http://www.uni-siegen.de/fb6/geomathe/research/inverse gravimetric problem).

We will clarify these statements in details in the following sections.

7.1.2 Non-uniqueness of IGP

The character of the non-uniqueness is given by the following theorem. Let %1 be a solution
of IGP and let ∂B be an external boundary of B with a continuous normal n. Then a class of
all solutions of IGP in L2(B) can be represented as

% = %1 + ∇2h ,

where
h|∂B =

∂h

∂n

∣∣∣∣
∂B

= 0′ .

In other words,∇2h generates a null external gravitational field.
The proof of this theorem is based on the Green’s third identity. For P in E3\B, it holds

V (P ) = G

∫
B

∇2h(Q)

dPQ
dVQ = G

∫
∂B

[
∂h(Q)

∂n

1

dPQ
− h(Q)

∂

∂n

(
1

dPQ

)]
dSQ = 0 , (7.2)

which implies that V = 0 in E3\B, and hence on ∂B.

7.1.3 Minimum-norm solution of IGP

From infinitely many solutions of IGP, we can choose the one with the smallest L2 norm. To
find it, let us search for anomalous mass density δ% such that∫

B
[ δ%(r,Ω) ]2 dV = min

δ%
,

under the integral constraints the form (e.g., Pěč and Martinec, 1984)

Vjm =

∫
B
δ%(r,Ω) rj Yjm(Ω) dV ,

where j = 0, 1, . . . , and m = −j, −j + 1, . . . , j. Here, Vjm are given potential coefficients
of the external gravitational field of the Earth and Yjm(Ω) are spherical harmonics. The
constrained variational form can be transformed to the unconstrained variational form by
using the Lagrange-multiplier method (Sansò et al., 1986)

δ

1

2

∫
B

[ δ%(r,Ω) ]2 dV +

∞∑
j=0

j∑
m=−j

λjm

[
Vjm −

∫
B
δ%(r,Ω) rj Yjm(Ω) dV

] = 0 , (7.3)

where δ is the variation with respect to δ%.
Performing variation results in a harmonic density anomaly (e.g., Tscherning and Sünkel,

1981)

δ%(r,Ω) =

jmax∑
j=0

j∑
m=−j

αjm rj Yjm(Ω) .
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A trivial criticism against the minimum-norm approach is that a harmonic density gener-
ates a density distribution attaining extremal values at the boundary. This property is not
acceptable for the total density; it might be reasonable for a density anomaly since in the
interior of the Earth with the increase of the pressure we may expect a higher homogeneity
of the masses.

7.1.4 The decomposition of L2 space

The above result suggests that the functional space L2(B) can be decomposed into the space
H of harmonic density functions and its orthogonal complement H⊥ (Ballani, Engels and
Grafarend, 1993; Ballani, Stromeyer and Barthelmes, 1993)

L2 = H ⊕H⊥ , (7.4)

where

H :=
{
rj Yjm(Ω), j = 0, 1, . . . ,m = −j, . . . , j

}
,

H⊥ :=

{
∇2h, h|∂B =

∂h

∂n

∣∣∣∣
∂B

= 0

}
. (7.5)

A sketch of the above decomposition is shown in Fig. 7.1.

H

H
⊥

a solution

the set of gravitationally
equivalent bodies

the harmonic solution
≡ the minimum L2-norm solution

Figure 7.1: Decomposition of the L2 space into harmonic and anharmonic spaces.

7.1.5 Instability of IGP

We finally demonstrate the instability of IGP following Matyska et al. (1987). Let the surface-
mass density σ = 0 on ∂B and let % := 0 in E3\B. The Laplace-Poisson equation for the
gravitational potential V is

∇2V = −4πG% , in E3 . (7.6)



108 7 Geophysical applications: study area B (WP5)

Applying the 3-D Fourier transform of the form

f̃(k) = (2π)−3/2

∫
E3

f(r) e−ikr d3r , (7.7)

to the Laplace-Poisson equation results in

k2 Ṽ (k) = 4πG %̃(k) , (7.8)

where k = |k| is a wave number.
Introducing the transfer function A(k), that maps the density % onto the gravitational

potential V ,

A(k) =
4πG

k2
, (7.9)

on the one hand, the forward gravimetric problem in the Fourier frequency domain has a
solution of the form

Ṽ (k) = A(k) %̃(k) . (7.10)

For k → ∞, A(k) → 0, and a solution of the forward GP is stable since small-scale density
features are damped in a gravitational potential solution.

On the other hand, the solution of the inverse gravimetric problem in the Fourier fre-
quency domain is

%̃(k) =
Ṽ (k)

A(k)
. (7.11)

When given potential data contain small-scale spatial features, those will be amplified in a
computed mass density model since A(k) → 0 for k → ∞. This demonstrates an unstable
property of IGP.

7.2 A refined model of sedimentary rock cover in the southeastern
part of the Congo Basin from GRACE/GOCE gravitation and
vertical gravitational gradient observations

We aim to interpret vertical gravitation and vertical gravitational gradient synthesized from
a GOCE gravitational model over the southeastern part of the Congo basin to refine the pub-
lished model of sedimentary rock cover. We use the GOCO03S global gravitational model
continued from satellite altitudes down to the Earth’s surface. In this case, gravitational and
gradiometric signals are enhanced and better reflect spatial patterns of sedimentary geology.

To avoid aliasing, the omission error of the modelled gravitation induced by the sedi-
mentary rocks is adjusted to that of the GOCO03S global gravitational model. The mass-
density Green’s functions derived for the a priori structure of the sediments show a slightly
greater sensitivity to the GOCO03S vertical gravitational gradients than to vertical gravita-
tion. Hence, the refinement of the sedimentary model is carried out for the vertical gravita-
tional gradient over the basin, such that a few anomalous values of the GOCO03S-derived
vertical gravitational gradient are adjusted by refining the sediment model. This maximizes
the signal-to-noise ratio and minimizes the errors due to the downward continuation of
the gravitational field. We apply the 5-parameter Helmert’s transformation defined by 2
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translations, 1 rotation and 2 scale parameters that are searched for by the steepest descent
method.

The refined sedimentary model is only slightly changed with respect to the original map,
but it significantly improves the fit of the vertical gravitation and vertical gravitational gradi-
ent over the basin. However, there are still spatial features in gravitational and gradiometric
data that remain unfitted by the refined model. These may be due to a mass density contrast
at the Moho discontinuity, lithospheric density stratification or mantle convection.

In the second step, the refined sedimentary model is used to find the vertical density strat-
ification of sedimentary rocks. Although the gravity data can be interpreted by constant
sedimentary density, such a model does not correspond to the gravitational compaction of
sedimentary rocks. Therefore, a density model is extended by including a linear increase of
sedimentary density with depth. Subsequent L2 norm and L∞ norm minimization proce-
dures are applied to find the density parameters by adjusting both the vertical gravitation
and the vertical gravitational gradient.

We found that including the vertical gravitational gradient in the interpretation of the
GOCO03S-derived data reduces a non-uniqueness of the inverse gradiometric problem for
density determination. The density structure of sedimentary rocks that provides the opti-
mum predictions of the GOCO03S-derived gravitation and vertical gravitational gradient
consists of a surface density contrast with respect to surrounding rocks of 0.24-0.28 g/cm3

and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. Moreover, the case that the sed-
imentary rocks are gravitationally completely compacted in the deepest parts of the basin
is not rejected by L∞ norm minimization. However, this minimization allows a remaining
density contrast at deepest parts of the sedimentary basin of about 0.1 g/cm3.

7.2.1 Introduction

The Congo Basin, basin of the Congo river, represents one of the largest hydrographic sedi-
mentary basins in the world. It is located almost entirely within the Democratic Republic of
Congo, forming a circular depression of approximately 1200 km diameter across, see the left
panel of Fig. 7.2. It has accumulated up to 10 km of sedimentary rocks from late-Precambrian
until the present day. The Congo Basin is classified as an intracratonic sedimentary basin
since its boundaries roughly coincide with those of the seismically-derived Congo craton
(Fishwick and Bastow, 2011; Schaeffer and Lebedev, 2013). Due to its relative inaccessibility
and the on-going regional political instability, the Congo Basin is the least studied conti-
nental sedimentary basin in the world (Roberts et al., 2013). This means the stratigraphy
of the sedimentary cover across the basin is poorly resolved as a result of the limited num-
ber of studies. Only four deep wells have been drilled in the Congo Basin, and most of
the Esso/Texaco seismic survey data acquired during the 1970’s is not publicly available.
A description and interpretation of some of these data has been given by (Daly et al., 1992;
Kadima, Delvaux, Sebagenzi, Tack and Kabeya, 2011; Lawrence and Makazu, 1988).

The formation of the Congo intracratonic basin is not well understood because it has un-
dergone multiple episodes of subsidence and sediment deposition since the early Paleozoic
and has been subject to varying influences of tectonic and isostatic forcing. The Congo Basin
is unique in that it coincides with a 70 mGal long-wavelength free-air gravity low, see the
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right panel of Fig. 7.2, and overlies a high shear-wave velocity structure in the uppermost
mantle as imaged by seismic tomography. In addition, its most recent subsidence deposited
continental sediments by yet unknown subsidence mechanisms (Buiter et al., 2012).

14� 16� 18� 20� 22� 24� 26�
-6� -6�

-4� -4�

-2� -2�

0� 0�

2� 2�

4� 4�

6� 6�

300 400 500 600

ETOPO1 topography (m)

14˚ 16˚ 18˚ 20˚ 22˚ 24˚ 26˚
−6˚ −6˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

4˚ 4˚

6˚ 6˚

−60 −30 0 30

Free−air gravity anomaly (mgal)

Figure 7.2: Left panel: ETOPO1 Earth’s surface topography over the Congo Basin. The ex-
pression ’Congo Basin’ is usually referred to the hydrographic basin. The minimum and
maximum topographic heights of the basin are about 250 m and 500 m, respectively. The
ETOPO1 surface topography was smoothed by spherical harmonic expansion up to degree
220, which is equal to the cut-off degree of the GOCO03S global gravitational model, and
the contour line of the 500 m smoothed topographic height (thick blue line) shows the ap-
proximate margin of the basin. Based on a simplified geological map by Kadima, Delvaux,
Sebagenzi, Tack and Kabeya (2011), the contour line between Cretaceous, Jurassic, Triassic
and older geological units (thick black line) defines the ‘Congo Basin’ in geological sense
(C. Braitenberg, personal communication). Right panel: Free-air gravity anomalies over the
Congo Basin synthesized from a full set of the GOCO03S potential coefficients truncated at
the degree jmax = 220. The area of interest to this study, the southeastern part of the Congo
Basin, is marked by the thin black line showing the contour line of 4 km thick sediments.
This part of the Congo Basin is hypothesized to originate by Neo-Proterozoic rifting.

Several different hypothesis have been proposed to explain the formation of the Congo
Basin and the isostatic compensation of low-density sediments. Kadima, Ntabwoba and
Lucazeau (2011) suggest that the compensation is at the depth of the Moho discontinuity, in
the form of crustal thinning inherited from the Neoproterozoic rifting phase. However, this
hypothesis contradicts the model of Moho discontinuity by Pasyanos and Nyblade (2007)
hereafter, and will not be applied in our study. Other hypotheses dealing with the isostatic
compensation of the low-density sediments by Downey and Gurnis (2009) and Crosby et al.
(2010) were comprehensively reviewed by Buiter et al. (2012). The later publication con-
cludes that: (i) current seismic tomography and gravity data do not prove or disprove the
various hypotheses suggested to explain the deposition of the sediments in the Congo Basin,
and (ii) the large variability between tomographic models indicates that it is unlikely that
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the mantle would play a major role in the subsidence of the Congo Basin.

The latest GOCE-based global gravitational models have a full spectral content up to the
degree and order 220, corresponding to the spatial resolution of 90 km, and precision of
1 mGal. The GOCO gravitational models improve upon the available information on the
ground gravity field in comparison to the EGM2008 global gravitational model (Pavlis et al.,
2012) in the regions where the quantity and quality of ground gravity data included in the
EGM2008 model is poor (Hirt et al., 2012; Bouman and Fuchs, 2012; Pail et al., 2013). This
is particularly evident in the central parts of Africa, where the noise of ground gravity data
incorporated in the EGM2008 model is substantially reduced.

Furthermore, GOCE provides information on the gravitational gradients in addition to
the vertical gravitation. The use of the gravitational gradients, in general, increases the in-
ferred field’s sensitivity to the shape and orientation of the Earth’s mass density structures.
However, their use may not always be straightforward because not all gravitational gradi-
ents are measured with equal accuracy (Frommknecht et al., 2011). In addition, the omission
error (i.e., the error due to the truncation of a spherical harmonic series) of the GOCO global
gravitational models changes the sensitivities of the individual gravitational gradients to
the Earth’s density stratification in a non-uniform way (Martinec, 2013). This, in particular,
makes the interpretation of the vertical-horizontal and horizontal-horizontal gravitational
gradients difficult.

Our interest in this study area is focused on the southeastern part of the Congo Basin
with an enormous basin depression hypothesized to originate from Neo-Proterozoic rifting
(marked by the black contour line in Fig. 7.2. The basin contains early Cretaceous to Qua-
ternary deposits overlying thick sediments of continental origin, consisting principally of
sands and sandstones. To our knowledge, there exist two maps of sediment thickness of the
Congo Basin; the global sediment map by Laske and Masters (1997) with the sedimentary
thickness digitized on the 1 arc-deg scale (left panel of Figure 7.3), and the regional sediment
map of the southeastern part of the Congo Basin by Kadima, Ntabwoba and Lucazeau (2011)
(right panel of Figure 7.3). The authors of the later map do not specify the spatial resolution
of the published map. They mention in their article that ”we have used the seismic and the
deep boreholes information, and also considered the information on the edge of the basin:
our basin model is therefore more accurate than that of Laske and Masters (1997)”. We ac-
cept this statement and consider the sediment map by Kadima, Ntabwoba and Lucazeau
(2011) as the a priori model of the thickness of the Congo Basin. 1

Our strategy requires to specify an error estimate of the Kadima, Ntabwoba and Lucazeau
(2011) sediment map. However, this information is not provided by the authors. An indirect
estimate of maximum errors of the Kadima, Ntabwoba and Lucazeau (2011) map could be
drawn from the differences between this map and the map by Laske and Masters (1997).
Comparing the two panels in Figure 7.3 we can see that the amplitudes of the sediment
thickness in each sediment map range approximately between similar magnitudes, reach-
ing maximum values of 9 to 10 km. However, the maps significantly differ in the positions
of maximum values of thickness. This may indicate that the errors in the location of sedi-

1This strategy has recently been independently confirmed by the unpublished map of sedimentary rocks
over the Congo Basin by C. Breitenberg.
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Figure 7.3: Thickness of sedimentary rocks of the southeastern part of the Congo Basin by
Laske and Masters (1997) (left panel) and by Kadima, Ntabwoba and Lucazeau (2011) (right
panel). The sediments reach a depth of 10 km. For easier comparison of the panels, the
contour lines of 4-km basin thickness by Kadima, Ntabwoba and Lucazeau (2011) is plotted
in thin black.

mentary basin by Kadima, Ntabwoba and Lucazeau (2011) could be as large as the differ-
ences between the two maps. Quantitatively, we may consider that the uncertainties of the
Kadima, Ntabwoba and Lucazeau (2011) map may reach values of 200–300 km.

Accepting this estimate of the uncertainty of Kadima, Ntabwoba and Lucazeau (2011)
map, our goal is to refine this isopach map of the sediment thickness such that it matches
the locations of the GOCO03S-derived vertical gravitational anomalies, gr, and the verti-
cal gravitational gradient anomalies, Vrr (Vrr = −∂gr/∂r). Having refined the geometrical
shape of the sedimentary basin, we aim, in the second step, to determine a density stratifica-
tion of sedimentary rocks that consistently reproduces the magnitude of both the GOCO03S-
derived gr and Vrr functionals.

7.2.2 Spherical harmonic analysis of the Congo sedimentary map

In the first step, the spherical harmonic analysis of the Congo sediment thickness map is
carried out. We use the regional sediment map by Kadima, Ntabwoba and Lucazeau (2011),
delimited by latitudes 6◦ N and 6◦ S, and longitudes 14◦ W and 27◦ W (right panel of Figure
7.3). Since the original data of sediment map were not available to us, we discretized the
published isopach map with the help of the Image Processing Toolbox under MATLAB into
an equiangular grid where the separation between parallels, ∆ϑ, is constant and is equal
to the separation between meridians, ∆λ = ∆ϑ = ∆. For the simple application of the
spherical harmonic analysis of the sediment thickness map, see Eqs. (7.14)–(7.16) below, the
discretization step is chosen to be very fine, ∆ = 0.01076 arc-deg. The resulting discretized
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sediment thickness map t(ϑk, ϕ`) contains K = 1206 and L = 1396 grid values in the merid-
ional, ϑ, and longitudinal, ϕ, directions, respectively. The thickness map is modelled by a
truncated spherical harmonic series,

t(Ω) =

jmax∑
j=0

j∑
m=−j

tjm Yjm(Ω) , (7.12)

where Ω stands for co-latitude and longitude, Ω ≡ (ϑ, ϕ), and Yjm(Ω) are the fully nor-
malized scalar spherical harmonics of degree and order j and m, respectively (Varshalovich
et al., 1989). To keep the omission error of the modelled gravitational field equal to the omis-
sion error of the GOCO03S model, the spherical harmonic series of Eq. (7.12) is truncated at
the same cut-off degree as the GOCO03S model, i.e., at jmax = 220.

The spherical harmonic expansion coefficients tjm are given by the surface integral

tjm =

∫
Ω0

t(Ω) Y ∗jm(Ω) dΩ , (7.13)

where Ω0 is the full solid angle, dΩ = sinϑ dϑ dϕ, and the asterisk denotes the complex
conjugation. The coefficients tjm can be determined by the spherical harmonic analysis of
grid values t(ϑk, ϕ`). The equiangular gridding of t(Ω) would allow us to make use of the
spherical harmonic analysis presented by Martinec (1991).

The Nyquist frequency jN = π/∆ of the applied grid size ∆ = 0.01076 arc-deg, that is
the quantity jN ≈ 16700, is significantly larger than the cut-off degree jmax = 220. Hence, a
simple rectangle quadrature can be applied to evaluate the integral for tjm numerically,

tjm =

K∑
k=1

L∑
`=1

t(ϑk, ϕ`) Y
∗
jm(ϑk, ϕ`) sinϑk ∆ϑ ∆ϕ . (7.14)

Denoting

Tm(ϑk) =
L∑
`=1

t(ϑk, ϕ`) e
−imϕ` , (7.15)

where tjm can be expressed in the form most convenient for numerical computations,

tjm =
K∑
k=1

Tm(ϑk) Pjm(ϑk) sinϑk ∆ϑ ∆ϕ . (7.16)

The reason for introducing the auxiliary coefficients Tm(ϑk) is that they can be evaluated
by the discrete Fourier transform, e.g., Fast Fourier transform (FFT), applied along each
parallel ϑk on L data points. Although the FFT is more efficient in the case of the number
of points along a parallel being an integer power of 2, this algorithm cannot be used here
since the number L contains other factors than only 2, therefore a less efficient version of the
FFT known as the mix-radix FFT (Singleton’s algorithm) is used. More details on numerical
implementation are given in Martinec (1991).

The right panel of Fig. 7.4 shows the spherical harmonic synthesis, see Eq. (7.12), of the
coefficients tjm truncated at the spherical harmonic degree jmax = 220. Comparing this with
the left panel of Fig. 7.3, we can see a very good agreement with the original Congo sedi-
mentary thickness map. However, as expected for a spherical harmonic synthesis derived
from a truncated series, the short-wavelength features of the original sedimentary thickness
are smoothed. Hence, these small-scale variations in the Congo Basin thickness cannot be
expected to be seen in the GOCO03S global gravitational model.
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Figure 7.4: The spherical harmonic synthesis of the thickness coefficients up to the degree
and order 220. The contour lines of 4-km basin thickness by Kadima, Ntabwoba and Lu-
cazeau (2011) is plotted in thin black.

7.2.3 External gravitational potential induced by sediments

Let us now compute the gravitational potential V c induced by the sedimentary layer,

V c(r,Ω) = G

∫
Ω0

∫ R

r′=rt(Ω′)

%c(r
′,Ω′)

L(r, ψ, r′)
r′

2
dr′ dΩ′ , (7.17)

where G is the Newton gravitational constant, R is the mean equatorial radius of the Earth,
L(r, ψ, r′) is the spatial distance between the computation point (r,Ω) and the integration
point (r′,Ω′),

L(r, ψ, r′) :=

√
r2 + r′2 − 2 r r′ cosψ , (7.18)

and ψ is the angular distance between geocentric directions Ω and Ω′. Furthermore, rt(Ω) is
the geocentric radius of the base of the sedimentary basin,

rt(Ω) = R − t(Ω) , (7.19)

where t(Ω) is the thickness of the sedimentary layer, expressed by Eq. (7.12), and %c(r,Ω) is
the mass density contrast of the sedimentary rocks with respect to the surrounding crustal
material.

For r > r′, the reciprocal distance 1/L can be expanded into a uniformly convergent series
of Legendre polynomials,

1

L(r, ψ, r′)
=

1

r

∞∑
j=0

(
r′

r

)j
Pj(cosψ) . (7.20)

By the Laplace addition theorem for scalar spherical harmonics,

Pj(cosψ) =
4π

2j + 1

j∑
m=−j

Y ∗jm(Ω′) Yjm(Ω) , (7.21)
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the reciprocal distance can be expressed as

1

L(r, ψ, r′)
=

1

r

∞∑
j=0

4π

2j + 1

(
r′

r

)j j∑
m=−j

Y ∗jm(Ω′) Yjm(Ω) . (7.22)

In view of this, the gravitational potential V c at the external point (r,Ω), that is for r >
R, where R is the mean equatorial radius of the Earth, can be expressed in terms of solid
spherical harmonics that are regular for r →∞,

V c(r,Ω) =
GM

R

jmax∑
j=0

j∑
m=−j

(
R

r

)j+1

V c
jm Yjm(Ω) , (7.23)

where M is the mass of the Earth. The factor GM/R is used to express the gravitational
potential V c with respect to the mean gravitational potential of the Earth. Consequently, the
potential coefficients V c

jm are normalized by the average density of the Earth, %mean, such
that

V c
jm =

3

R%mean

σcjm
2j + 1

. (7.24)

The scaled potential coefficients σjm express the contributions of the various mass density
distributions inside the Earth to the external gravitational field. In the case of a sedimentary
basin where there is a mass density contrast between the sedimentary rocks with respect to
the surrounding crustal material, %c(r,Ω), the potential coefficients σcjm are

σcjm =

∫
Ω0

∫ R

r′=rt(Ω′)
%c(r

′,Ω′)

(
r′

R

)j+2

Y ∗jm(Ω′) dr′ dΩ′ . (7.25)

7.2.4 Sediment density contrast model

As stated earlier, the Congo Basin consists of various types of sedimentary rocks. Following
Buiter et al. (2012), we do not consider separately the uppermost Mesozoic-Cenozoic sedi-
mentary rocks because the thickness of this layer is relatively small. Instead, our sediment
density model applies to the total sediment thickness and coverage. Due to the gravitational
compaction of sediments after their deposition, the density of sedimentary rocks increases
with depth. The sediment density can therefore be viewed, to the first approximation, as a
linearly increasing function with depth (Buiter et al., 2012). The sediment density contrast,
%c, thus decreases linearly with depth and can be described by two parameters, the surface
density contrast, α, and the linear gradient, β,

%c(r,Ω) = α− β R− r
R

, for r ∈
(
rt(Ω), R

)
. (7.26)

This model sketched in Fig. 7.2.4 implies a density discontinuity at the boundary between
the sedimentary basin and the surrounding crustal material. An alternative to β is the pa-
rameter B defined by the condition

%c(R−B,Ω) = 0 . (7.27)

A simple manipulation results in the relation between density-contrast parameters,

B =
α

β
R . (7.28)
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Figure 7.5: Sketch of the sediment density contrast model used in this study (see the text for
definition of terms).

The parameter B (B > 0) can be viewed as a hypothetical depth of zero sediment density
contrast.

Buiter et al. (2012) assume that i) the sediments are composed from the same rocks as the
surrounding crust, and (ii) the gravitational compaction of sedimentary rocks had been com-
pleted at the deepest point of the Congo sedimentary basin. Under these two assumptions,
they define B = 8 km. Kadima, Delvaux, Sebagenzi, Tack and Kabeya (2011) alternatively
relax the assumption on the complete gravitational compaction and estimate the sediment
density at a few depth levels of the basin (ibid., Table 1). However, we conduct hereafter the
inverse modelling for %c and vary both parameters α andB such that the GOCO03S-derived
gravitation and vertical gravitational gradient are simultaneously adjusted in the sense of a
certain functional norm.

7.2.5 Expansion of the power of the basin topography into spectral harmonics

Equation (7.25) indicates that it is convenient to express the power of the basin topography
in terms of spherical harmonics. For integer n, n ≥ 1, and using Eq. (7.19), it holds that

1

n
(r′)n

∣∣∣∣R
r′=rt(Ω′)

=
1

n

(
Rn − rnt (Ω′)

)
=

Rn

n

[
1 −

(
1− t(Ω′)

R

)n ]
. (7.29)

Expanding the nth power of the expression in the round brackets by the binomial theorem,
the right-hand side can be written as a power series of t/R,

1

p
(r′)p

∣∣∣∣R
r′=rt(Ω′)

= Rp
[
t

R
− p− 1

2

t2

R2
+

(p− 1)(p− 2)

6

t3

R3

− (p− 1)(p− 2)(p− 3)

24

t4

R4
+ O(

t

R
)5

]
, (7.30)

where the dependency of t on spherical coordinates Ω is dropped and the terms of the bino-
mial series are expressed explicitly up to the 4th power of t/R. This requires the pth power
of the thickness map t(Ω), p = 1, · · · , 4, to be expressed as a spherical harmonic series, trun-
cated at the same degree as the series Eq. (7.12) for t(Ω),

[t(Ω)]p =

jmax∑
j=0

j∑
m=−j

t
(p)
jm Yjm(Ω) . (7.31)
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The power thickness coefficients t(p)jm can be expressed analytically in terms of the coeffi-
cients tjm by the Clebsch-Gordan coupled series (Martinec et al., 1989) and subsequently
computed numerically by the algorithm of Martinec (1989). We will apply an alternative
approach based on the numerical quadrature.

The grid values t(ϑk, ϕ`) are first raised to the p−th power and the values [t(ϑk, ϕ`)]
p are

then analyzed by numerical quadrature formulae in Eqs. (7.15) and (7.16). The Nyquist fre-
quency of the p−th power of the signal is reduced p times which may cause an aliasing
error. A very fine discretization of the Congo Basin thickness map with the Nyquist fre-
quency jN ≈ 16700 prevents the distortion by the aliasing error for powers p < 75 when
the spherical harmonic series of Eq. (7.31) for [t(Ω)]p is cut at jmax = 220. This condition
is safely satisfied in the binomial series of Eq. (7.30) truncated at the power p = 4. Having
computed the power thickness coefficients t(p)jm, their synthesis [t(Ω)]p divided by Rp−1 is
shown in Fig. 7.6 for p = 1, . . . , 4.

We can draw two conclusions from Fig. 7.6. First, the spatial signal [t(Ω)]p/Rp−1 gradually
decreases with increasing power p by roughly the factor of 800. It means, for instance, that
the magnitude ratio between [t(Ω)] and [t(Ω)]4/R3 is about 5×108, or expressed numerically,
if the thickness t(Ω) reaches 10 km, the largest value of [t(Ω)]4/R3 is about 0.2 mm. This is
a significantly smaller value than an expected error in the original sediment thickness map
(see Introduction). Consequently, the binomial series in Eq. (7.30) can be safely truncated for
powers p > 4.

Second, for the larger power p, the map [t(Ω)]p/Rp−1 has more pronounced maximum
values. This understandable feature is important when interpreting the external gravita-
tional field over the basin with respect to how the region over which the misfit between
the modelled and observed gravitational functionals is defined, that is, the region of misfit
should be concentrated around the maximum values of t(Ω), whereas the shallower regions
should be downweighted.

7.2.6 Scaled potential coefficients

We are now prepared to evaluate the scaled potential coefficients σjm for the sediment den-
sity contrast model of Eq. (7.26). The successive use of Eqs. (7.26) and (7.30) for p = j + 3

and p = j + 4 in Eq. (7.25) gives

σcjm =

∫
Ω0

∫ R

r=rc(Ω)

(
α+ β

r −R
R

) ( r
R

)j+2
Y ∗jm(Ω) dr dΩ

= R

∫
Ω0

[
(α− β)

1

j + 3

( r
R

)j+3
+
β

R

1

j + 4

( r
R

)j+4
]R
r=rc(Ω′)

Y ∗jm(Ω) dΩ

=

∫
Ω0

[
α
(
t− j + 2

2

t2

R
+

(j + 2)(j + 1)

6

t3

R2
− (j + 2)(j + 1)j

24

t4

R3

)

+ β
(
− 1

2

t2

R
+

(j + 2)

3

t3

R2
− (j + 2)(j + 1)

8

t4

R3

) ]
Y ∗jm(Ω) dΩ , (7.32)
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Figure 7.6: Spherical harmonic synthesis of the power thickness coefficients t(p)jm, divided by
Rp−1 for p = 1, . . . , 4. The coefficients are truncated at the degree jmax = 220. To compare the
amplitudes of the individual contributions to the series in Eq. (7.30), the maps [t(Ω)]p/Rp−1

are multiplied by factor of 800p−1.
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where the fifth and higher powers of sediment thickness have been omitted. Making use of
the orthonormality property of scalar spherical harmonics, we obtain

σcjm = ασcjm,α + β σcjm,β , (7.33)

where

σcjm,α = tjm −
j + 2

2

t
(2)
jm

R
+

(j + 2)(j + 1)

6

t
(3)
jm

R2
− (j + 2)(j + 1)j

24

t
(4)
jm

R3
,

σcjm,β = − 1

2

t
(2)
jm

R
+

(j + 2)

3

t
(3)
jm

R2
− (j + 2)(j + 1)

8

t
(4)
jm

R3
. (7.34)

It is important to emphasize that the term linearly proportional to tjm in the coefficient σcjm,β
has been canceled by algebraic subtraction.

Retaining the two largest contributions to σcjm yields

σcjm = α tjm −
β

2

t
(2)
jm

R
. (7.35)

We can now make an important observation for solving an inverse problem for α and β.
Since t(Ω) ≥ 0 (and [t(Ω)]2 ≥ 0), the contribution to the external gravitational potential
by the constant-density term α tjm is reduced by the contribution of the linear gradient-
density term β t

(2)
jm. Hence, the fit of the external gravitational field performed by a constant

density of sedimentary rocks will slightly differ from the fit by a constant density and a
linear density gradient.

As already indicated, we are interested in adjusting the first and second radial derivatives
of the GOCO03S gravitational potential by those induced by sedimentary rocks over the
southeastern part of the Congo Basin. The two gravitational field functionals are defined as

gcr = −∂Vc
∂r

,

V c
rr =

∂2Vc
∂r2

. (7.36)

Substituting the scaled potential coefficients σcjm from Eq. (7.33) to Eq. (7.24), the potential V c

and its first and second radial derivatives can be written in the form where the dependency
on the density parameters α and β is made explicit,

V c =
∑
τ=α,β

τ Gcτ (r,Ω) ,

gcr =
∑
τ=α,β

τ Gcr,τ (r,Ω) , (7.37)

V c
rr =

∑
τ=α,β

τ Gcrr,τ (r,Ω) ,

where the potential-density functions are

Gcτ =
GM

R

3

R%mean

∑
jm

(R
r

)j+1 σcjm,τ
2j + 1

Yjm(Ω) ,

Gcr,τ =
j + 1

r
Gcτ (r,Ω) , (7.38)

Gcrr,τ =
(j + 1)(j + 2)

r2
Gcτ (r,Ω) .
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To demonstrate the differences between the modelled and observed gravitational field
functionals, we choose numerical values of α and β (or, alternatively, the parameter B
according to Eq. (7.28)) and compute the scaled potential coefficients σcjm. The choice of
α = 0.25 g/cm3 and B = 30 km corresponds to the optimal solution of inverse modelling
for α and β based on the L∞ minimization of residuals. This step will be conducted in
Section 10. Furthermore, we use the GOCO03S global gravitational model continued from
satellite altitudes down to the Earth’s surface, i.e., we choose r = R. In this case, the grav-
itational and gradiometric signals are enhanced and better reflect a spatial pattern of the
sedimentary geology.
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Figure 7.7: Left panel: Modelled vertical gravitation gcr (top) and the vertical gravitational
gradient V c

rr (bottom) induced by the sedimentary rocks in the southeastern part of the
Congo Basin. The sediment density parameters are chosen as α = 250 kg m−3 and B = 30.
Three and four minimum values of gcr and V c

rr are denoted by black and red dots, respec-
tively. Right panel: The vertical gravitation gr (top) and the vertical gravitational gradient
Vrr (bottom) derived from the GOCO03S global gravitational model. Both the modelled and
GOCO03S potential coefficients are truncated at jmax = 220. Four minimum values of gr
and Vrr are denoted by black and red crosses, respectively. For easier comparison of the
panels, the contour lines of basin thickness 4, 5, 6 and 8 km are plotted in thin black.
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The modelled gravitational functionals gcr and V c
rr (left panels of Fig. 7.7) reproduce, in

a first view, the amplitudes (but not the spatial positions) of the GOCO03S gravitational
functionals gr and Vrr (right panels of Fig. 7.7) in an approximate way. The correlation
coefficient between the modelled and observed gravitational signals is 0.51, while is -0.03
for the vertical gravitational gradient signals.

To make more precise observations, three and four minimum values of gcr and gr are de-
noted by black dots and black crosses, respectively, and four minimum values of V c

rr and Vrr
are denoted by red dots and red crosses, respectively.

We can make two observations by comparing the panels column-wise and row-wise. In
the former case, we find that the positions of the minimum values of gr do not exactly coin-
cide with the minimum values of Vrr, which is valid for either modelled or observed signals.
This is particularly visible at the southern-eastern minimum values of gr and Vrr. This effect
is related to the often-asked question: Can we learn more about the Earth’s density strat-
ification if gravitational data gr are simultaneously interpreted together with gravitational
gradient data Vrr compared to the case when only gravitational data gr are used? In other
words, do Vrr data reflect a density stratification in another way? To answer this question,
we determine the Green’s functions that map a mass density distribution to the gravitational
field functionals.

7.2.7 Mass-density Green’s functions for gravitation and vertical gravitational
gradient

Multiple differentiation of the Newton integral in Eq. (7.17) with respect to r results in

gcr = G

∫
Ω0

∫ R

r′=rt(Ω′)
%c(r

′,Ω′) Gr(r, x, r
′) dV ′ ,

V c
rr = G

∫
Ω0

∫ R

r′=rt(Ω′)
%c(r

′,Ω′) Grr(r, x, r
′) dV ′ , (7.39)

where x := cosψ, dV ′ = r′2 dr′ dΩ′, and

Gr(r, x, r
′) =

1

r2
Kr(t, x) := − ∂

∂r

(
1

L

)
,

Grr(r, x, r
′) =

1

r3
Krr(t, x) :=

∂2

∂r2

(
1

L

)
, (7.40)

are the mass-density Green’s functions of the gravitation and the vertical gravitational gra-
dient, respectively. The physical units of the Green’s functionsGr andGrr are m−2 and m−3,
respectively. Therefore, it may be advantageous to use the dimensionless Green’s functions
Kr and Krr, which depend on the dimensionless variable t,

t :=
r′

r
. (7.41)

By differentiating Eq. (7.18) with respect to r, the Green’s functions can be expressed in the
closed spatial forms,

Kr(t, x) =
1− tx
g3

,
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Krr(t, x) = − 1

g3
+

3(1− tx)2

g5
, (7.42)

where
g(t, x) :=

L

r
. (7.43)

In addition, by differentiating Eq. (7.20) with respect to r, the Green’s functions can ex-
pressed in the spectral form as an infinite series of the Legendre polynomials,

Kr(t, x) =
∞∑
j=0

(j + 1) tj Pj(x) , (7.44)

Krr(t, x) =

∞∑
j=0

(j + 1)(j + 2) tj Pj(x) .

The left panel in Fig. 7.8 plots the Green’s functions Kr(t, cosψ) (blue solid line) and
Krr(t, cosψ) (red solid line) evaluated by the closed spatial formulae in Eq. (7.42) for an-
gular distances 0 ≤ ψ ≤ 1.5 arc-deg and t = 0.99221 which corresponds to a computation
point at 50 km height.
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Figure 7.8: Mass-density Green’s functions Kr(t, cosψ) (blue lines) and Krr(t, cosψ) (red
lines) evaluated by the closed formulae in Eq. (7.42) (solid lines) and by spectral represen-
tation in Eq. (7.44), truncated at the degree jmax = 220 (dashed lines), respectively. The
functions Krr are scaled such that their amplitudes at ψ = 0 arc-deg are equal to that of Kr

at that point. The height of the computation point above the Earth’s surface is 50 km (left
panel) and 10 km (right panel), respectively.

To be able to compare the regions of non-zero supports of the Green’s functions, Krr is
scaled down such that its amplitude at ψ = 0 arc-deg is equal to that of Kr at that point. We
can see that function Krr decreases faster than function Kr with increasing angular distance
ψ, which is a well-known fact from potential field theory. Quantitatively, the amplitudes of
function Krr are smaller than 10−4 × Krr(t, 1) for distances ψ > 0.6 arc-deg. Hence, Krr
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can be considered effectively zero for distances ψ > 0.6 arc-deg, while Kr has still signifi-
cant non-zero amplitudes at that region. Projecting this fact into the integrals (7.39) tells us
that mass density anomalies at distances ψ > 0.6 arc-deg contribute to gr, but only negli-
gibly to Vrr. When solving the inverse problem for mass density distribution, this implies
that the vertical gravitational gradient provides more localized information on the density
distribution than the vertical gravitation.

Figure 7.8 also shows the Green’s functions Kr (blue dashed line) and Krr (red dashed
line) computed by summing the series of Legendre polynomials in Eq. (7.44) up to the cut-off
degree jmax = 220, which is the cut-off degree of the GOCO03S global gravitational model.
The Green’s functions using the full spectrum (solid lines) differ from those computed by
summing the series of Legendre polynomials up to cut-off degree jmax = 220 (dashed lines)
due to the fact that a short-wavelength part of the full-spectrum Green’s functions, that
is the part for degrees j > 220, has a non-negligible amplitude in comparison to the am-
plitude of a long-wavelength part, that is the part for degrees j ≤ 220. This holds for a
near-surface observer. In contrast, at GOCE satellite’s altitudes, the difference between the
full-spectrum and long-wavelength Green’s functions is negligible since a short-wavelength
part of the Green’s functions decays faster with increasing distance from the Earth than a
long-wavelength part (Martinec, 2013). Hence, the Green’s functions for gravitational gra-
dients can be calculated by either way at GOCE satellite’s altitudes.

The truncated function Krr (red dashed line in Figure 7.8) is again scaled down to adjust
the amplitude of the truncated function Kr (blue dashed line) at ψ = 0 arc-deg. We can
see that the local support of the truncated Green’s function Krr goes beyond the distance
ψ = 1 arc-deg which is, at least, two time larger than the support of the full-spectrum (that
is, closed form) Green’s function Krr. Moreover, as seen from Eq. (7.44), the spectrum of
Green’s functionKrr differs from that of the functionKr by multiplication by the factor j+2.
This factor amplifies a short-wavelength part ofKrr stronger than a long-wavelength part of
Krr. That is why, the full-spectrum function Krr differs from the full-spectrum function Kr

(shown by solid lines in Figure 7.8) more largely than for the truncated Green’s functions.

When solving the inverse problem for the density distribution, the later means that the
GOCO03S gravitational model, truncated at jmax = 220, provides similar information with
regards to the density stratification, regardless if the vertical gravitation or the vertical grav-
itational gradient are interpreted. For instance, including the vertical gravitational gradient
in the interpretation will change only slightly the density model compared to using vertical
gravitation data only. This statement will be quantified numerically in Section 10. This also
explains a slight difference in the positions of minimum values of gr and Vrr in Figure 7.8.

The right panel in Figure 7.8 shows the Green’s functions for a computational point at 10
km height. The figure can qualitatively be interpreted in a similar way as the left panel for
a computational point at 50 km height. However, the local support of the Green’s function
Krr is now significantly smaller. Quantitatively, the amplitudes of full-spectrum function
Krr are smaller than 10−4 × Krr(t, 1) for distances ψ > 0.1 arc-deg. Consequently, mass
density anomalies at distances ψ > 0.1 arc-deg contribute only negligibly to Vrr. Hence,
by lowering the height of an observer above the Earth’s surface, the contribution of mass
density anomalies to Vrr is more localized in the neighbourhood of the point ψ = 0 arc-
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deg. This helps to reduce the non-uniqueness of the inverse gradiometric problem for mass-
density determination. The same holds for the vertical gravitation gr.

7.2.8 Refined model of the thickness of the Congo Basin

Comparing the panels of Figure 7.7 row-wise, we can make a second observation, in that the
locations of the anomalous values of the modelled gravitational functionals do not coincide
with those of the GOCO03S model, but are slightly shifted. As discussed in Introduction, the
uncertainty of Kadima, Ntabwoba and Lucazeau (2011) sediment map can only be estimated
indirectly by the differences with respect to the sediment map by Laske and Masters (1997).
This criterion gives an estimate of maximum error of Kadima, Ntabwoba and Lucazeau
(2011) map in the horizontal direction of about 200–300 km. Within this range, we will
attempt to modify the shape of the sedimentary basin in such a way that the modelled
gravitational functionals match the spatial pattern of the observed functionals more closely.
The modification will be carried out for the sediment thickness map and not for the observed
gravitational functionals, since the errors in gr and Vrr of the GOCO03S gravitational model
are less than 1 mGal and 20 mE at 90 km spatial wavelengths, respectively (Pail et al., 2013).

There are many ways to modify the sediment thickness map and density distribution
within the sedimentary basin such that the induced gravitational field more closely resem-
bles the GOCO03S gravitational model. In an extreme case, the modification will ensure
that the modelled and observed gravitational field functionals fit exactly to each other. This
can be done by an affine transformation (e.g. Watt, 2000) between the two fields. We will
not follow this approach since (i) the GOCO03S model is erroneous (see the error estimates
in the previous paragraph) and (ii) there may be other internal basin, crustal and mantle
density contributions to the observed gravitational field.

Our approach will modify the shape of the sedimentary basin in a such way that the
locations of Vrr anomalies coincide (but not necessarily be adjusted exactly) in the modelled
and observed gravitational fields. We apply the two-dimensional Helmert transformation
which maps the original datum ~x to a transformed datum ~x ′ in a two-dimensional (x, y)

space by the prescription

~x ′ = ~d + S R ~x . (7.45)

This is a special type of affine transformation characterized by 5 parameters with the follow-
ing meaning: the translation vector ~d contains two translations along the x and y coordinate
axes, 2× 2 diagonal scale matrix S and 2× 2 rotation matrixR describing the rotation along
z axis by angle ω. The matrices S and R are unitless and R is an orthogonal matrix. The
componential form of Eq. (7.45) for the clockwise rotation is given by

x′ = d1 + s1 (x cosω + y sinω) ,

y′ = d2 + s2 (−x sinω + y cosω) , (7.46)

where (x, y) and (x′, y′) are the components of the original and transformed datum, respec-
tively.
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The 5-parameter vector ~p = {d1, d2, s1, s2, ω} is calculated from the positions of the ref-
erence points, i.e., the points whose coordinates are known before and after the transfor-
mation. Since a total of 5 parameters are to be determined, at least two points and one
coordinate of a third point must be known. We will, however, use more than 3 reference
points and minimize a misfit between their coordinates after applying the Helmert trans-
formation, ~xi ′(~p), and those of the associated observation points, ~x

′obs
i , that is the function

F (~p) :=
1

2

N∑
i=1

(
~xi
′(~p) − ~x

′obs
i

)T (
~xi
′(~p) − ~x

′obs
i

)
, (7.47)

where N is the number of reference points (in our case N > 3). Equations (7.46) show that
the transformed coordinates of the reference points are non-linear functions of the transfor-
mation parameters ~p. That is why the minimization of the misfit, F (~p), is performed by the
steepest descent method (Press et al., 1992) in a sequence of iterations expressed as

~pn+1 = ~pn − γn∇~pF (~pn) , (7.48)

where ~p0 is an initial guess of ~p. Moreover, the differentiation of Eq. (7.47) with respect to
parameters ~p gives the components of the gradient of the misfit function,

∂F

∂pk
=

N∑
i=1

(
~x ′i(~p) − ~x

′obs
i

)T ∂~xi
′

∂pk
, k = 1, . . . , 5 . (7.49)

In addition, the differentiation of Eqs. (7.46) with respect to parameters pk vanishes unless

∂x′

∂d1
= 1 ,

∂x′

∂s1
= x cosα + y sinα ,

∂x′

∂α
= s1 (−x sinα + y cosα) ,

∂y′

∂d2
= 1 ,

∂y′

∂s2
= − x sinα + y cosα ,

∂y′

∂α
= s2 (−x cosα − y sinα) .

(7.50)

The 2-D Helmert transformation is numerically performed for four reference points (N =

4) that are determined by the local minima of the modelled and observed vertical gravita-
tional gradient, see Fig. 7.9. The reference points of the modelled V c

rr, i.e., the points ~xi prior
to applying the Helmert transformation, are shown as red dots, while the reference points
of the observed Vrr, i.e., the points ~x

′obs
i , being the points to be adjusted, are red crosses.

The coordinates (ϑi, ϕi) of the reference points are given in Table 7.1 where the left and
right columns stand for the reference points ~xi and ~x

′obs
i , respectively. The pairs of reference

points are associated row-wise.
From the mutual positions of the red dots and red crosses in the right panel of Fig. 7.9,

we can estimate that the transformation ’moves’ the reference points less than 100 km. To
get the numerical values of the Helmert transformation parameters, the steepest descent
searching is run with the initial estimate ~p0 = {0, 0, 1, 1, 0}, which corresponds to the case
when the modelled V c

rr map coincides to the observed Vrr map. The convergence graph of
the steepest descent sequence is shown in Fig. 7.10. We can see the asymptotic behavior of
the sequence and determine that the sequence can be stopped after about 50×103 iterations.
The convergence of the gradient descent is slow because the step size γn in Eq. (7.48) is
chosen to be constant, γn = γ = 10−3.
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Figure 7.9: Reference points of the modelled gravitational functional V c
rr (left panel, red

dots) and the GOCO03S functional Vrr (right panel, red crosses) chosen for applying the
Helmert transformation. For an easier comparison of the panels, the contour lines for the
basin thicknesses of 4, 5, 6 and 8 km are plotted in thin black.

Table 7.1: Spherical longitude and latitude (in arc-deg) of four reference points of V c
rr and

GOCO03S-derived Vrr, plotted in Figure 7.9 by red dots and red crosses, respectively.

V c
rr Vrr

20.25 -1.55 19.90 -2.50
22.65 -3.50 22.30 -2.90
24.70 -0.55 23.90 -0.35
18.90 -0.35 17.75 -1.00
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Figure 7.10: The convergence graph of the steepest descent searching.
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The final values of the transformation parameters are

~p = {0.873◦ , −4.59◦ , 0.949 , 0.760 , −13.7◦} . (7.51)

The panels of Figure 7.11 show the modelled gcr and V c
rr after applying the Helmert trans-

formation with parameters ~p given by Eq. (7.51). Comparing them with the right panels of
Fig. 7.7, we can see that the GOCO03S derived gr and Vrr are now adjusted in a closer way
than the original modelled gcr and V c

rr shown in the left panels of Fig. 7.7. The correlation
coefficient between the modelled and the observed gravitational signals is 0.52, while is 0.20
for the vertical gravitational gradient signals. However, as expected, the gravity maps are
not adjusted exactly. The change in the modelled gcr and V c

rr by the Helmert transformation
is transparent from the distortion of the contour lines of 4, 5, 6 and 8 km basin thickness
map. The modelled gravity maps are mostly distorted in the region where the reference
points ~xi and ~x

′obs
i are furthest from each other, which is in the north-west part of the grav-

ity anomaly. This region is shifted by about 100 km south. All other parts of the gravity
maps are shifted by shorter distances, for instance, the southernmost reference point sees a
shift by 30 km southwards.
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Figure 7.11: Modelled gravitational functionals gcr (left panel) and V c
rr (right panel) after ap-

plying the Helmert transformation with parameters ~p given by Eq. (7.51). For easier analysis
of the effect of the Helmert transformation, the contour lines of 4, 5, 6 and 8 km basin thick-
ness are plotted as thin black lines (before the transformation) and thick red line (after the
transformation), respectively.

Having determined the transformation parameters ~p, the original sediment thickness map
(left panel of Fig. 7.11) can be transformed in a similar way. The transformed map is shown
in Fig. 7.12. Comparing it with the original thickness map leads to the same conclusions
as for the transformation of gravitational maps. The sediment thickness map is mostly dis-
torted in the north-west part while the southernmost part is slightly shifted southwards.
The transformed sediment thickness map in Fig. 7.12 can be viewed as a refined model of
the southeastern part of the Congo Basin in the sense that the induced gravitational func-
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tionals gcr and V c
rr by sedimentary rocks resemble closely to the GOCO03S-derived gravita-

tional functionals. To our knowledge, there are no independent and publicly available data
that can be used to access the refinement of the sediment map. However, the refined sedi-
ment map resembles an unpublished sediment map (C. Braitenberg, personal comm.) more
closely than the original Kadima, Ntabwoba and Lucazeau map.
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Figure 7.12: Sediment thickness map of the southeastern part of the Congo Basin after ap-
plying the Helmert transformation with parameters ~p given by Eq. (7.51). For easier analysis
of the effect of the Helmert transformation, the contour lines of 4, 5, 6 and 8 km basin thick-
ness are plotted in thin black lines (before the transformation) and in thick red lines (after
the transformation), respectively.

7.2.9 Other gravitational signals

The gravitational signal generated by the sedimentary rocks has only been considered up till
now. However, there are possibly other mass-density sources beneath the Congo Basin con-
tributing to observed gravity outside the Earth. For instance, a large negative gravitational
signal is induced by an increase in the crustal thickness under the Congo Basin (Pasyanos
and Nyblade, 2007) with a positive density contrast at the Moho discontinuity. Oppositely,
the existence of a high density body within the Congo cratonic lithosphere was proposed
by Downey and Gurnis (2009). Such a massive body would generate a large positive grav-
itational signal such that, if the parameters of the body are correctly adjusted, the dynamic
topography, reduced Bouguer and free-air gravity can be explained. There are other rather
speculative crustal and lithospheric structures that could contribute to the gravitational field
over the Congo Basin and explain the Congo Basin gravity anomalies. A comprehensive
overview on simple gravity models due to crustal and lithospheric structures is given by
Buiter et al. (2012).

Since the data currently available for the Congo Basin do not allow to constrain these
mass-density models more precisely, we will consider only two limiting scenarios of gravi-
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tational signals due to crustal and lithospheric origin. First, except the gravitational signal
generated by low-density sedimentary rocks, all other gravitational signals generated by
the Earth’s internal mass distribution are supposed to be completely gravitationally com-
pensated such that their sum does not contribute to the external Earth’s gravitational field.
This assumption was adopted by Kadima, Ntabwoba and Lucazeau (2011) who interpreted
the free-air gravity anomaly over the Congo Basin without applying any other gravitational
reductions to observed gravity.

An alternative scenario assumes that a large negative gravitational signal induced by the
Moho discontinuity is compensated by crustal and lithospheric density sources. Unlike the
previous case, the compensation is supposed not to be complete and a residual gravitational
signal is observed outside the Earth. There is a number of ways of how the compensation
of this large negative signal may operate. Here we will choose a simple Airy compensa-
tion model where the density contrast at the Moho discontinuity is adjusted such that the
gravitational signal due to the surface topography is compensated (but not completely) by
the signal due to the Moho discontinuity. The density contrast at the Moho is found by
minimizing the sum of the two signals, which is a linear inverse problem for the density
contrast at the Moho (Martinec, 1994). The minimization in the sense of least squares results
in the density contrast at the Moho of 21 kg/m3. This value is about an order of magnitude
smaller than a standard density contrast at the Moho discontinuity (e.g., Martinec, 1994).
This reflects the fact that the reduced density contrast at the Moho discontinuity substitutes
positive gravitational signals of deeper lithospheric origin, such as a high-density body in a
deep Congo cratonic lithosphere (Downey and Gurnis, 2009), that are not considered here.

Using the ETOPO1 topography model of the Earth’s surface, the gravity, gtopo
r , and the

vertical gravitational gradient, V topo
rr , induced by the Congo Basin topographic masses has

been computed by Eq. (7.33), where β = 0 and α = 2670 kg/m3. Likewise, using the
Pasyanos and Nyblade (2007) model of the Moho discontinuity, represented in the 1◦ × 1◦

grid, and assuming a density jump between the lower crust and upper mantle being re-
gionally invariant, equal to α = 21 kg/m3, the gravitational signal, gMoho

r , and the vertical
gravitational gradient, V Moho

rr , induced by a density contrast at the Moho has been com-
puted. Spherical harmonic expansion coefficients of the Earth’s surface topography and
Moho discontinuity are truncated at the degree jmax = 220.

The left bottom panel of Fig. 7.13 shows that the Bouguer V topo
rr signal over the study

area, delimited by the 4-km sediment thickness, is a short-wavelength signal varying around
the zero level by about ±1.5 E, while the Bouguer V Moho

rr signal (the right bottom panel of
Fig. 7.13) is a longer-wavelength signal reaching amplitudes of -1.5 E. The sum of these
two signals, shown in Fig. 7.21, does not correlate either spatially- or wavelength-wise with
the sediment thickness map of the southeastern part of the Congo Basin (the correlation
coefficient is equal to 0.07).

Figure 7.15 compares the original GOCO03S-derived vertical gravitational gradients Vrr
(the left panel) with these gravitational gradients corrected for the gravitational gradients
due to the surface topography and the Moho discontinuity, that is with Vrr − V topo

rr − V Moho
rr

(right panel). We can see that the two signals resemble spatially very well. For easier com-
parison of the panels, four minimum values of Vrr, used for refining the original sediment
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Figure 7.13: The Bouguer V topo
rr signal (left bottom) due to the ETOPO1 surface topography

(left top) over the study area (delimited by the 4-km contour line of thickness of the sedi-
mentary layer) with the crustal density of 2670 kg m−3. The Bouguer V Moho

rr signal (right
bottom) due to the Moho discontinuity (Pasyanos and Nyblade, 2007) (right top) with the
density contrast between sediments and crust of 280 kg m−3. The ETOPO1 Earth’s surface
topography and Moho discontinuity are represented by spherical harmonic series truncated
at the degree jmax = 220.

Figure 7.14: The sum of the Bouguer signals V topo
rr and V Moho

rr shown in bottom panels of
Figure 7.13.
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map by the Helmert transformation, are shown. We can see that these minimum values
coincide very well with the minimum values of the corrected signal Vrr − V topo

rr − V Moho
rr .

Due to these facts, the Bouguer signals V topo
rr and V Moho

rr have not been taken into account to
correct the GOCO03S-derived vertical gravitation and the vertical gravitational gradient in
the following inverse modelling.
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Figure 7.15: The original GOCO03S-derived vertical gravitational gradients Vrr (the left
panel) and the corrected vertical gravitational gradients for the Bouguer signals V topo

rr and
V Moho
rr (the right panel). For easier comparison of the panels, the four minimum values of
Vrr, used for refining the original sediment map by the Helmert transformation, are shown.

7.2.10 The inverse problem for sediment density contrast

Having refined the geometrical shape of the sedimentary basin, we are ready to determine
a density stratification of the sedimentary rocks in the southeastern part of the Congo Basin
by interpreting the GOCO03S-derived gravitation and vertical gravitational gradient. Let
φc stand for the vertical gravitation or the vertical gravitational gradient, that is, φc ≡ gcr,
or φc ≡ V c

rr, and let φc be computed at M (M > 2) sites located in the region of interest.
The forward-model data of the gravitational functional φc consist of M values of φci , i =

1, · · · ,M . Equations (7.37)2,3 determine the dependency of the modelled data on the density
contrast parameters α and β,

φci = αΦc
α(ri,Ωi) + β Φc

β(ri,Ωi) , (7.52)

where Φc
τ ≡ Gcr,τ and Φc

τ ≡ Gcrr,τ (τ = α, β) for φc ≡ gcr and φc ≡ V c
rr, respectively, and

Gcr,τ and Gcrr,τ are given by Eqs. (7.38)2,3. Moreover, let φobs
i be the gravitation and vertical

gravitational gradient, respectively, derived from the GOCO03S gravitational model. The
residuals between the modelled and observational values of φc are

Ri = φci − φobs
i , i = 1, · · · , M . (7.53)
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The only two density contrast parameters do not allow us to force the residuals to vanish
at all M points. Instead, the parameters α and β will be searched by minimization of the
residuals Ri in sense of a certain norm. Let us first minimize the residuals in the sense of L2

norm,

χ2(α, β) :=
1

2

M∑
i=1

R2
i

!
= min

α,β
, (7.54)

or, by words, we are searching for parameters α and β such that the misfit χ2(α, β) is mini-
mized. This problem is solved by setting the derivatives of χ2(α, β) with respect to α and β
equal to zero which results in a system of two linear algebraic equations for α and β,

M∑
i=1

Ri
∂Ri
∂α

= 0 ,

M∑
i=1

Ri
∂Ri
∂β

= 0 . (7.55)

In view of Eq. (7.52), it holds
∂Ri
∂τ

= Φc
τ (r,Ω) , (7.56)

and the system of equations (7.55) can be written in the form

αραα + βραβ = dα ,
(7.57)

αραβ + βρββ = dβ ,

where

ρτσ :=
M∑
i=1

Φc
τ (ri,Ωi) Φc

σ(ri,Ωi) ,

(7.58)

dτ :=

M∑
i=1

φobs
i Φc

τ (ri,Ωi) .

We will apply this approach separately for the gravitation, φc ≡ gcr, and for the vertical
gravitational gradient, φc ≡ V c

rr.
An underlying non-uniqueness of the solution for α and β raises the question of how to

define the area over which the misfit χ2 is calculated. After performing a number of nu-
merical experiments with a variable size of the misfit area, starting from the entire Congo
Basin, shown in Figure 7.2, up to nearest neighboring points of the maximum thickness of
the basin, we chose the area inside the 4-km contour line of the basin thickness. This choice
ensures that the trade-off between considering the entire southeastern part of the Congo
Basin as the misfit area and maximizing a signal-to-noise ratio is balanced. The misfit area
for the modelled gravitation gcr and the vertical gravitational gradient V c

rr, after refining the
shape of the sediment thickness map by the Helmert transformation, and the associated ob-
served quantities are shown in the left and right panels of Figure 7.16, respectively. Indeed,
the misfit area contains the largest negative values of gcr and V c

rr, but it is not confined only to
the nearest neighborhood of minimum values of the GOCO03S-derived gravitational func-
tionals.

Beside solving Eqs. (7.57) for parameters α and β, we conduct a systematic parameter-
space search over a range of the density parameters α andB (which replaces β by Eq. (7.28)).
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Figure 7.16: Left panels: The modelled vertical gravitation gcr (top) and the vertical grav-
itational gradient V c

rr (bottom) after applying the Helmert transformation over the misfit
area delimited by the 4-km contour line of the refined basin thickness (red bounding line).
The contour lines of 5, 6 and 8 km refined basin thickness are additionally plotted in red
lines. Right panels: The vertical gravitation gr (top) and the vertical gravitational gradi-
ent Vrr (bottom) derived from the GOCO03S gravitational model. Both the modelled and
GOCO03S potential coefficients are truncated at the degree jmax = 220.
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The misfit χ2 for the gravitation and the vertical gravitational gradient is plotted in the left
and right panels of Fig. 7.17, respectively, as a function of α (varied between 0.1 g/cm3 and
0.5 g/cm3) and B (varied between 0 and 50 km). The values α and β that minimize the
misfit χ2 have been determined by solving Eqs. (7.57). Their numerical values are

α = 0.369 g/cm3, B = 7.14 km , (7.59)

for the vertical gravitation, and

α = 0.244 g/cm3, B = 10.58 km , (7.60)

for the vertical gravitational gradient, respectively. The minimum value of the misfit, χ2
min,

that is the value of χ2 for the respective parameter by Eqs. (7.59) and (7.60) is shown by the
red crosses in Fig. 7.17. After finding χ2

min, the confidence interval of the parameters can
be determined by the F -test method based on the assumption that the error of observations
φobs
i are uncorrelated, normally distributed and have a zero mean (e.g., Press et al., 1992).

The grey shadings indicate the 1-σ confidence interval for the density parameters.
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Figure 7.17: The L2 misfit of residuals for the vertical gravitation (left) and the vertical grav-
itational gradient (right) as a function of α and B. The grey shadings indicate the 1-σ confi-
dence interval for the free parameters. The cross in both panels shows the values of α and β
that minimize the misfit χ2.

As indicated by Eqs. (7.59) and (7.60), the L2 optimal estimates differ whether the L2

norm of the vertical gravitation or the vertical gravitational gradient is minimized. This can
be explained by slightly different behaviour of the mass-density Green’s functions Kr and
Krr, as shown in Fig. 7.8. As stated earlier, the function Kr has a broader spatial support
than Krr. Hence, the gravitation at the computation point is sensitive to a density structure
of a slightly larger lateral extent than that of the vertical gravitational gradient.

As a consequence of a non-uniqueness in determining α and β parameters, the contour
lines of both the L2 misfits are L-shaped that results in the trade-off between the two density
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parameters. This allows for a number of density parameter interpretations. Let us consider
only two extreme cases. First, the choice of a large value of α requires a small value of B,
that is, a large linear density decrease β of sedimentary rocks. The minimum-misfit values
of α and B by Eq. (7.59), or the right–bottom corner of the 1-σ uncertainty area in the misfit
panels represent this case. It would mean that the sedimentary rocks are completely gravi-
tationally compacted in the basin such that there is no density contrast between sediments
and surrounding rocks below the depth of about 7 km. An alternative scenario is that the
gravitational compaction of sediments has not been completed yet which would correspond
to the choice 0.2 g/cm3 ≤ α ≤ 0.3 g/cm3 and B > 10 km, the values also lying within 1-σ
uncertainties.
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Figure 7.18: The modelled gravitational functional gcr (left panel) and V c
rr (right panel) for

the L2 optimal density parameters α = 0.369 g/cm3, B = 7.14 km and α = 0.244 g/cm3,
B = 10.58 km, respectively. The misfit area is delimited by the 4-km contour line of the
refined basin thickness (red bounding line). The contour lines of 5, 6 and 8 km refined basin
thickness are additionally plotted in red lines.

The modelled gcr and V c
rr for the optimal density parameters given by Eqs. (7.59) and

(7.60) are shown in Fig. 7.18. Comparing these modelled gravitational functionals with the
observational values in Fig. 7.16 (right panels), we see that the extremal values are smoothed
out resulting in overall smoothed predictions of gcr and V c

rr. Hence, Fig. 7.18 represents a
smooth approximation of the observational data which is a consequence of applying the L2

norm criterion (7.54) in the above minimization approach. However, as already indicated,
we are interested in adjusting largest values of the observational gravitational functionals
since, in this case, the signal-to-noise ratio is maximized. Hence, instead of minimizing
the L2 norm of the residuals, the density parameters are now searched by minimizing the
L∞ norm of the residuals. By minimizing the L∞ norm instead of the L2 norm, we are, in
principal, fitting the extremal values of the residuals. The L∞ norm of the residuals (7.53) is

L∞ = max(|R1| , · · · , |RM |) . (7.61)

Figure 7.19 shows the L∞ norm of the residuals of the gravitation and the vertical gravi-
tational gradient, respectively. The gray shading indicates the 1-σ uncertainty. The interval
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Figure 7.19: The L∞ misfit of residuals for the vertical gravitation (left) and the vertical
gravitational gradient (right) as a function of α and B. The grey shadings indicate the 1-σ
confidence interval for the free parameters.

estimates of the density parameters are

0.24 g/cm3 ≤ α ≤ 0.28 g/cm3 , B > 8 km . (7.62)

In contrast to the estimates in Eqs. (7.59) and (7.60), which differ whether the L2 norm of
the gravitation or the vertical gravitational gradient is minimized, the parameter estimates
given by Eq. (7.62) are common for both the gravitational functionals. We can see that the
surface density contrast α is constrained by a quite narrow interval, while only the minimum
value of the parameter B is constrained. Moreover, the case that the sedimentary rocks are
gravitationally completely compacted in the deepest parts of the basin is not rejected by L∞
norm minimization since values of B > 8 km lie inside the 1-σ uncertainty.

The left panels of Fig. 7.20 show two modelled horizontal-horizontal and one vertical-
horizontal gravitational gradient components, that is (grad gradVc)ϑϑ, (grad gradVc)ϕϕ and
(grad gradVc)rϑ, for the optimal density parameters given by Eqs. (7.62). Though these grav-
itational gradient components have not been adjusted by the inverse modelling for the den-
sity parameters, the modelled components reproduce, in a first view, the amplitudes (but
not the spatial positions) of the GOCO03S-derived gravitational gradient components (right
panels of Fig. 7.20) in an approximate way. It is a matter of fact that there is a principal
difference in the interpretation of the vertical and horizontal gravitational gradients. We
have seen in Section 7.2.7 that the mass-density Green’s function for gr and Vrr are reduced
in amplitude when omitting the short wavelength part, but the positions of the maximum
values at ψ = 0 arc-deg do not change with such an omission. This is not the case for the
mass-density Green’s functions of the vertical-horizontal and horizontal-horizontal gravi-
tational gradients. Their amplitudes are also reduced when omitting the short-wavelength
part, but, in addition, their maximum values are shifted towards larger distances ψ from the



7.2 A refined model of sedimentary rock cover in the southeastern part of the Congo Basin
from GRACE/GOCE gravitation and vertical gravitational gradient observations 137

14� 16� 18� 20� 22� 24� 26� 28�

-6� -6�

-4� -4�

-2� -2�

0� 0�

2� 2�

4� 4�

6� 6�

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2 3

3

14˚ 16˚ 18˚ 20˚ 22˚ 24˚ 26˚ 28˚

−6˚ −6˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

4˚ 4˚

6˚ 6˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

CBK sediments (jmax=220)  

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/drdθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/drdθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/drdθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/drdθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dθ2 (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)~q#q (E)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)~q#q (E)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)θ∼θ  (Ε)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)θ∼θ  (Ε)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dφ2 (E)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)θθ (Ε)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)θθ (Ε)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)φφ (Ε)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)φφ (Ε)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
d2V/dr dθ (E)

1

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)θθ (Ε)

2
3

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)θθ (Ε)

0

3

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)φφ (Ε)

2

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)φφ (Ε)

0

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)rθ (Ε)

16˚ 18˚ 20˚ 22˚ 24˚ 26˚

−4˚ −4˚

−2˚ −2˚

0˚ 0˚

2˚ 2˚

−4 −3 −2 −1 0 1 2 3 4
(grad grad V)rθ (Ε)

1

Figure 7.20: The L∞ misfit of residuals for the vertical gravitation (left) and the vertical
gravitational gradient (right) as a function of α and B. The grey shadings indicate the 1-σ
confidence interval for the free parameters.
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observer (Martinec, 2013). Shifting the maximum values of a mass-density Green’s function
means that the sensitivity of the vertical-horizontal and horizontal-horizontal gradients is
transferred to the density structure at different places than for the original, full-wavelength
Green’s function. This fact complicates the interpretation of the GOCE-derived horizontal-
horizontal and vertical-horizontal gravitational gradient components, and warrants further
investigations.

7.2.11 Discussion and conclusions

The objective of this study was to assess whether the latest GOCE gravitational models can
improve our knowledge on the density stratification of the sedimentary rocks that form
the Congo Basin. We digitize the regional sediment thickness map published by Kadima,
Ntabwoba and Lucazeau (2011) and modify it in such a way that a refined spatial shape of
sedimentary rocks results in a gravitational field that closely resembles the GOCO03S grav-
itational data over the basin. We believe that it is a legitimate step since (i) the Congo Basin
is the least studied continental sedimentary basin in the world, and (ii) the refined sediment
map only slightly modifies the findings in Kadima, Ntabwoba and Lucazeau (2011), such
that the changes to the original sediment map are not larger than 100 km in the horizontal
direction.

These arguments are supported by the fact that Kadima, Ntabwoba and Lucazeau (2011)
do not specify the uncertainties of the published sediment map. In addition, the compari-
son with the Laske and Masters (1997) sediment map over the Congo Basin may result in
the conclusion that the Kadima, Ntabwoba and Lucazeau sediment map may still contain
significant errors in the thickness of sedimentary rocks that are larger than the modification
of the map proposed in this article.

If there is no wish to modify the original map, a heuristic way of finding a sediment
density stratification would be as follows. Prescribe an initial estimate of the density strat-
ification for the original sediment thickness data, compute the induced vertical gravitation
and vertical gravitational gradient, compare their amplitudes, but not the spatial patterns,
with those derived from the GOCO03S gravitational model and refine a density stratifica-
tion to adjust the amplitudes of the gravitational functionals by applying the trial-and-error
method.

Having refined the shape of the sediment thickness map, a natural next step was to apply
a formal mathematical approach to determine a vertical density stratification of the sedi-
mentary rocks. Although the gravitational data can be interpreted by a constant sediment
density, such a model does not represent the gravitational compaction of sedimentary rocks.
Therefore, a density model is extended by including a linear gradient of sediment density
with depth. By applying the L2 norm, but mainly L∞ norm minimization procedures the
density parameters are found such that both the vertical gravitation and the vertical grav-
itational gradient are adjusted simultaneously. The sediment density model that provides
the predictions best matching the GOCO03S-derived gravitational functionals is described
by a surface density contrast (i.e., the contrast with respect to surrounding crustal rocks) of
0.24-0.28 g/cm3 and its decrease with depth of 0.05-0.25 g/cm3 per 10 km. We found that
including the vertical gravitational gradient in the interpretation of the GOCO03S-derived
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data results in the fact that sediment density contrast in the deepest parts of the basin may
remain of about 0.1 g/cm3.

Future work on this topic will deal with the interpretations of the GOCE-derived vertical-
horizontal and horizontal-horizontal gravity in terms of a near-surface density structure.
This shallow structure is to be incorporated to a lithospheric-scale model based on simul-
taneous fitting of both geophysical (e.g., potential fields, seismic tomography) and petro-
logical (e.g., composition from mantle xenoliths) data sets (e.g., Fullea et al., 2010). This
extension deserves our attention since the horizontal gradients, in general, increase the sen-
sitivity to the shape and orientation of Earth’s density structures.

7.3 Mass-density Green’s functions for gravitational gradients

7.3.1 Introduction

The GOCE satellite mission measures gravitational gradients at the perigee height of 255
km. The latest GOCE gravitational models have full spectral content up to the degree and
order 220, corresponding to the spatial resolution of 90 km with precision of 1 mGal. These
models have improved upon the available information about the terrestrial gravitational
field in comparison to the EGM2008 model (Pavlis et al., 2012) in regions where the quantity
and quality of ground gravity data included in the EGM2008 model is poor (Bouman et al.,
2011; Bouman and Fuchs, 2012; Hirt et al., 2012). This is particularly evident in less well
surveyed parts of the world, e.g., central Africa, where the noise in ground gravity data
incorporated into the EGM2008 model has been substantially reduced. A number of studies
have exploited the capabilities of the new GOCE data in constraining the Earth’s crust and
oceans (e.g., Álvarez et al., 2012; Bingham et al., 2011; Hirt et al., 2012; Köther et al., 2012;
Mariani et al., 2013), the lithosphere (Bouman et al., 2013) and the upper mantle structure
(Fullea et al., 2013).

When interpreting the GOCE gravitational gradients in terms of the solid Earth’s struc-
ture, two different views on the height where the GOCE gravitational gradients are adjusted
by modelled quantities have been considered. For the identification of geological units in
unexplored parts of the world, such as the central part of Africa, it is useful to continue the
GOCE gravitational gradients from the satellite altitude down to (or close to) the Earth’s sur-
face, since the downward continuation amplifies the gradiometric signal and better reflects
the near-surface geological structure. However, the downward continuation also enhances
the signal induced by the topographic masses and increases the sensitivity of the results to
uncertainty in topographic-mass density estimates. The standard value of 2670 kg m−3 for
topographic-mass density may introduce an undesired error to downward-continued grav-
itational gradients, for instance, in areas of elevated, low-density sediments (e.g., the Congo
Basin).

In addition, the downward continuation amplifies not only the signal, but also the noise
and omission error (in general, the omission error is the signal that has not been modelled,
Losch et al., 2002). At satellite altitudes, the high-frequency noise and omission error are
dampened, but continuing them downward (close) to the Earth’s surface, they are amplified
significantly more than the signal. Hence, if the downward continuation of GOCE data is
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not constrained by additional data with a short-wavelength content, or if the omission error
of the downward-continued signal is not filtered out, the GOCE data are interpreted at the
satellite altitude or a mean satellite altitude. This view has been adopted for lithospheric or
upper-mantle modelling (Fullea et al., 2013; Bouman et al., 2013).

The omission error of the GOCE gravitational gradients can mathematically be described
and its amplification by downward continuation numerically estimated. This motivates this
part of the geophysical research over the Study area B. We present a detailed and systematic
derivation of the mass-density Green’s functions for GOCE gravitational gradients in the
spherical-harmonic and closed forms. We demonstrate that these two alternative forms pro-
vide a mathematical tool for calculating the omission error of the bandwidth-limited gradio-
metric data at satellite altitude and its amplification when the GOCE satellite gravitational
gradients are continued towards the Earth’s surface. The spectral forms of the gravitational
gradients are further used to calculate the sensitivity of the satellite gravitational gradients
to the depth of a density anomaly.

7.3.2 Green’s functions for gravitation and gravitational gradients

The gravitational potential V generated by the volume density distribution % inside the
Earth with the volume V is expressed by the Newton integral (e.g., Kellogg, 1954; Heiskanen
and Moritz, 1967),

V (~r) = κ

∫
V
%(~r ′) G(~r, ~r ′) dV , (7.63)

where κ is the Newton gravitational constant, G(~r, ~r ′) is the reciprocal distance between the
computation point ~r and the integration point ~r ′ of the mass element dm = %(~r ′) dV ,

G(~r, ~r ′) =
1

L(~r, ~r ′)
. (7.64)

The function G(~r, ~r ′) solves the Poisson integral equation for the gravitational potential V
with the right-hand side equal to the Dirac delta function δ(~r − ~r ′). In the terminology of
partial differential equations, G(~r, ~r ′) is the Green’s function for the gravitational potential
(e.g., Renardy and Rogers, 1993).

Applying successively the operator ‘grad‘ to the gravitational potential V results in the
gravitational vector ~g = gradV and the gravitational gradient (or gradiometric) tensor Γ =

grad gradV ,

~g(~r) = κ

∫
V
%(~r ′) ~G(~r, ~r ′) dV , (7.65)

Γ(~r) = κ

∫
V
%(~r ′)G(~r, ~r ′) dV . (7.66)

The respective vector and tensor Green’s functions for the gravitation and the gravitational
gradient are

~G(~r, ~r ′) = grad
1

L
, (7.67)

G(~r, ~r ′) = grad grad
1

L
. (7.68)
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Expressing the distance L in the Cartesian coordinates and applying successively the oper-
ator ’grad’ to 1/L results in

~G(~r, ~r ′) = − ~r − ~r ′

L3
, (7.69)

G(~r, ~r ′) = − 1

L3

[
I − 3(~r − ~r ′)⊗ (~r − ~r ′)

L2

]
, (7.70)

where I is the second-order identity tensor and symbol ⊗ stands for the dyadic product of
vectors.

7.3.3 Spherical-harmonic form of Green’s functions for the gravitational poten-
tial

To represent the Green’s function G(~r, ~r ′) in terms of spherical harmonics, we express the
distance L between the points ~r and ~r ′ by the cosine theorem

L(r, ψ, r′) =
√
r2 + r′2 − 2rr′ cosψ , (7.71)

where r and r′ are the magnitudes of vectors ~r and ~r ′, respectively, and ψ is the angular
distance between geocentric directions of ~r and ~r ′. For r > r′, the reciprocal distance 1/L

can be expanded into a uniformly convergent series of the Legendre polynomials Pj(cosψ),
e.g., (Arfken et al., 1968),

1

L(r, ψ, r′)
=

1

r

∞∑
j=0

(
r′

r

)j
Pj(cosψ) . (7.72)

The Laplace addition theorem for scalar spherical harmonics reads as (Varshalovich et al.,
1989)

Pj(cosψ) =
4π

2j + 1

j∑
m=−j

Y ∗jm(Ω′) Yjm(Ω) , (7.73)

where Ω represents the co-latitude ϑ and longitude ϕ of the computation point, Ω ≡ (ϑ, ϕ),
and Ω′ refers to the co-latitude ϑ′ and longitude ϕ′ of a mass integration point, Ω′ ≡ (ϑ′, ϕ′),
Yjm(Ω) are the fully normalized scalar spherical harmonics of spherical degree and az-
imuthal order j andm, and the asterisk denotes the complex conjugate. Substituting Eq. (7.73)
into Eq. (7.72) results in

1

L(r, ψ, r′)
=

1

r

∞∑
j=0

4π

2j + 1

(
r′

r

)j j∑
m=−j

Y ∗jm(Ω′) Yjm(Ω) . (7.74)

In view of Eqs. (7.63) and (7.64), this is the spherical-harmonic representation of the mass-
density Green’s function G for the gravitational potential V in the case where the radial
distance of the computation point from the geocentre is greater than the radial distance of a
mass integration point from the geocentre (r > r′).
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7.3.4 Spherical-harmonic form of the Green’s function for gravitation

To represent the vector Green’s function ~G(~r, ~r ′) for the gravitational vector ~g, we use the
following gradient formula (Varshalovich et al., 1989)

grad
[
f(r) Yjm(Ω)

]
=

df(r)

dr
Y

(−1)
jm (Ω) +

√
j(j + 1) i

f(r)

r
Y

(1)
jm(Ω) , (7.75)

where Y (λ)
jm(Ω) are spheroidal vector spherical harmonics. The gradient of 1/L with respect

to the coordinates of the computation point is then expressed as

grad
1

L
=

1

r2

∞∑
j=0

4π

2j + 1

(
r′

r

)j j∑
m=−j

Y ∗jm(Ω′)
[
−(j+1)Y

(−1)
jm (Ω)+

√
j(j + 1)Y

(1)
jm(Ω)

]
. (7.76)

The representation of Y (±1)
jm (Ω) in the spherical unit base vectors ~er, ~eϑ and ~eϕ is then written

as (Varshalovich et al., 1989)

Y
(−1)
jm (Ω) = ~er Yjm(Ω) ,

Y
(+1)
jm (Ω) =

1√
j(j + 1)

(
∂Yjm(Ω)

∂ϑ
~eϑ +

1

sinϑ

∂Yjm(Ω)

∂ϕ
~eϕ

)
. (7.77)

Substituting Eq. (7.77) into Eq. (7.76) and denoting

t :=
r′

r
, (7.78)

yields

grad
1

L
=

1

r2

∞∑
j=0

4π

2j + 1
tj

j∑
m=−j

Y ∗jm(Ω′)

×
[
− (j + 1) Yjm(Ω) ~er +

∂Yjm(Ω)

∂ϑ
~eϑ +

1

sinϑ

∂Yjm(Ω)

∂ϕ
~eϕ

]
.

In view of Eqs. (7.65) and (7.67), this is the spherical-harmonic representation of the mass-
density Green’s function ~G for the gravitational vector ~g in the case where the radial distance
of the computation point from the geocentre is greater than the radial distance of a mass
integration point from the geocentre (r > r′).

As for the mass-density Green’s function for the gravitational potential, the use of the
angular distance ψ offers the advantage that the sensitivity of the Green’s function to the
angular distance between the computation point and a mass source can easily be analyzed.
Beside the spherical coordinates (ϑ, ϕ), we consider the spherical coordinates (ψ, α) with
the origin at the computation point, where the azimuth α is reckoned from the north. Re-
calling the addition theorems for the first-order derivatives of scalar spherical harmonics
(Grafarend, 2001; Martinec, 2003),

j∑
m=−j

∂Yjm(Ω)

∂ϑ
Y ∗jm(Ω′) =

2j + 1

4π
cosα sinψ

dPj(cosψ)

d cosψ
,
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j∑
m=−j

1

sinϑ

∂Yjm(Ω)

∂ϕ
Y ∗jm(Ω′) = −2j + 1

4π
sinα sinψ

dPj(cosψ)

d cosψ
, (7.79)

and the addition theorem for scalar spherical harmonics, Eq. (7.73), the mass-density Green’s
function for the gravitation, ~G = grad (1/L), is expressed in terms of the isotropic parts
depending on the angular distance ψ between the computational point and an integration
point and their positions in the radial direction, and the parts depending on the azimuth α

grad
1

L
=

1

r2

[
Kr(t, x) ~er +KΩ(t, x) (cosα ~eϑ − sinα ~eϕ)

]
, (7.80)

where x = cosψ has been substituted for abbreviation. The two isotropic kernels Kr(t, x)

and KΩ(t, x) are given by infinite series of Legendre polynomials and their first derivatives

Kr(t, x) = −
∞∑
j=0

(j + 1) tj Pj(x) ,

KΩ(t, x) =
√

1− x2

∞∑
j=0

tj
dPj(x)

dx
. (7.81)

7.3.5 Spherical-harmonic form of the Green’s function for gravitational gradient

Applying the operator ’grad’ twice to 1/L and using Eq. (7.74), we obtain

grad grad
1

L
=
∞∑
j=0

4π

2j + 1
(r′)j

j∑
m=−j

Y ∗jm(Ω′) grad grad

[
r−j−1 Yjm(Ω)

]
. (7.82)

Martinec (2003) showed that

grad grad

[
r−j−1 Yjm(Ω)

]
= r−j−3 ,

×
[

(j + 1)(j + 2) Z
(1)
jm(Ω) − 2(j + 2) Z

(2)
jm(Ω) +

1

2
Z

(3)
jm(Ω) +

j + 2

2j
Z

(4)
jm(Ω)

]
, (7.83)

where Z(λ)
jm(Ω) are the spheroidal tensor spherical harmonics. Creating the dyadic products

of spherical unit base vectors ~er, ~eϑ and ~eϕ and taking the symmetric part of the result, we
define the symmetric spherical dyadics

eij = [~ei ⊗ ~ej ]sym , i, j ∈ {r, ϑ, ϕ} . (7.84)

The dyadic components of the tensor spherical harmonics are then (Martinec, 2000)

Z
(1)
jm(Ω) = Yjm(Ω) err ,

Z
(1)
jm(Ω) = Yjm(Ω) err ,

Z
(2)
jm(Ω) = Ejm(Ω) erϑ + Fjm(Ω) erϕ ,



144 7 Geophysical applications: study area B (WP5)

Z
(3)
jm(Ω) = Gjm(Ω) (eϑϑ − eϕϕ) + 2Hjm(Ω) eϑϕ ,

Z
(4)
jm(Ω) = −j(j + 1) Yjm(Ω) (eϑϑ + eϕϕ) , (7.85)

where the abbreviations have the following meanings,

Ejm(Ω) =
∂Yjm(Ω)

∂ϑ
,

Fjm(Ω) =
1

sinϑ

∂Yjm(Ω)

∂ϕ
,

Gjm(Ω) =

(
∂2

∂ϑ2
− cotϑ

∂

∂ϑ
− 1

sin2 ϑ

∂2

∂ϕ2

)
Yjm(Ω) ,

Hjm(Ω) =
∂

∂ϑ

(
1

sinϑ

∂Yjm(Ω)

∂ϕ

)
. (7.86)

Substituting Eq. (7.83) into Eq. (7.82) and using Eqs. (7.84)–(7.86) yields

grad grad
1

L
=

1

r3

∞∑
j=0

4π

2j + 1
tj

j∑
m=−j

Y ∗jm(Ω′)

[
(j + 1)(j + 2) Yjm(Ω) err

− 2(j + 2) (Ejm(Ω) erϑ + Fjm(Ω) erϕ) +
1

2
Gjm(Ω) (eϑϑ − eϕϕ) +Hjm(Ω) eϑϕ

− 1

2
(j + 1)(j + 2) Yjm(Ω) (eϑϑ + eϕϕ)

]
. (7.87)

In view of Eqs. (7.66) and (7.68), this is the spherical-harmonic representation of the mass-
density Green’s function G for the gravitational gradient tensor Γ in the case where the ra-
dial distance of the computation point from the geocentre is greater than the radial distance
of a mass integration point from the geocentre (r > r′).

As for the mass-density Green’s functions for the gravitational potential and gravitation,
we express the Green’s function for the gravitational gradient tensor in terms of the spherical
polar coordinates (ψ, α). Recalling the addition theorems for the 2nd order derivatives of
scalar spherical harmonics (Martinec, 2003),

j∑
m=−j

Ejm(Ω) Y ∗jm(Ω′) =
2j + 1

4π
cosα sinψ

dPj(cosψ)

d cosψ
,

j∑
m=−j

Fjm(Ω) Y ∗jm(Ω′) = − 2j + 1

4π
sinα sinψ

dPj(cosψ)

d cosψ
,

j∑
m=−j

Gjm(Ω) Y ∗jm(Ω′) =
2j + 1

4π
cos 2α sin2 ψ

d2Pj(cosψ)

d(cosψ)2
,
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j∑
m=−j

Hjm(Ω) Y ∗jm(Ω′) = − 2j + 1

4π
sin 2α sin2 ψ

d2Pj(cosψ)

d(cosψ)2
, (7.88)

and the addition theorem for scalar spherical harmonics, Eq. (7.73), the Green’s function for
the gravitational gradient tensor, G = grad grad (1/L), is expressed in terms of the isotropic
parts that depend upon the angular distance ψ and the parts depending on the azimuth α,

grad grad
1

L
=

1

r3

[
Krr(t, x) err + 2KrΩ(t, x) (cosα erϑ − sinα erϕ)

+ KΩΩ(t, x)
(

cos 2α (eϑϑ − eϕϕ)− 2 sin 2α eϑϕ

)
− 1

2
Krr(t, x) (eϑϑ + eϕϕ)

]
. (7.89)

Note that, as expected, the trace ofG vanishes,

TrG = 0 . (7.90)

The three isotropic kernels Krr(t, x), KrΩ(t, x) and KΩΩ(t, x) are given by the infinite series
of Legendre polynomials and their first and second derivatives

Krr(t, x) =

∞∑
j=0

(j + 1)(j + 2) tj Pj(x) ,

KrΩ(t, x) = −
√

1− x2

∞∑
j=0

(j + 2) tj
dPj(x)

dx
,

KΩΩ(t, x) =
1

2
(1− x2)

∞∑
j=0

tj
d2Pj(x)

dx2
. (7.91)

The Legendre polynomials and their derivatives can alternatively be expressed in terms
of the fully normalized associated Legendre polynomials Pjm(x) of the azimuthal order
m = 0, 1 and 2, respectively, as (Varshalovich et al., 1989)

Krr(t, x) =

∞∑
j=0

(j + 1)(j + 2)

√
4π

2j + 1
tjPj0(x) ,

KrΩ(t, x) =
∞∑
j=0

(j + 2)
√
j(j + 1)

√
4π

2j + 1
tj Pj1(x) ,

KΩΩ(t, x) =
1

2

∞∑
j=0

√
(j − 1)j(j + 1)(j + 2)

√
4π

2j + 1
tj Pj2(x) . (7.92)
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7.3.6 Closed form of the isotropic kernels of the Green’s function for the gravi-
tation

Complementary to the infinite series for the isotropic kernels Kr(t, x) and KΩ(t, x), see
Eq. (7.81), we now express these kernels in closed forms. We first apply the gradient op-
erator to 1/L, which in spherical coordinates (ϑ, ϕ) is written as

grad
1

L
=

∂

∂r

(
1

L

)
~er +

1

r

∂

∂ϑ

(
1

L

)
~eϑ +

1

r sinϑ

∂

∂ϕ

(
1

L

)
~eϕ . (7.93)

The partial derivative of 1/L with respect to r is obtained by differentiating Eq. (7.71) with
respect to r,

∂

∂r

(
1

L

)
= − r − r′x

L3
= − 1− tx

r2g3
, (7.94)

where g ≡ g(t, x) =
√

1 + t2 − 2tx, −1 ≤ x ≤ 1, 0 < t ≤ 1, is the reciprocal generating
function of the Legendre polynomials (e.g., Arfken et al., 1968). The partial derivatives of
1/L with respect to ϑ and ϕ, respectively, can be expressed in terms of the derivative of 1/L

with respect to cosψ. By the chain rule of differentiation, (Martinec, 2003) showed that

∂

∂ϑ
= cosα sinψ

∂

∂ cosψ
,

1

sinϑ

∂

∂ϕ
= − sinα sinψ

∂

∂ cosψ
. (7.95)

Hence,

∂

∂ϑ

(
1

L

)
= cosα sinψ

∂

∂ cosψ

(
1

L

)

= cosα sinψ
rr′

L3
= cosα sinψ

t

r2g3
. (7.96)

Likewise,
1

sinϑ

∂

∂ϕ

(
1

L

)
= − sinα sinψ

t

r2g3
. (7.97)

Substituting Eqs. (7.94), (7.96) and (7.97) to Eq. (7.93) gives

grad
1

L
=

1

r2g3

[
− (1− tx) ~er + t sinψ (cosα ~eϑ − sinα ~eϕ)

]
. (7.98)

Comparing this with Eq. (7.80) yields

Kr(t, x) := − 1− tx
g3

,

KΩ(t, x) :=
√

1− x2
t

g3
. (7.99)

These are the closed forms of the isotropic kernels of the mass-density Green’s function for
gravitation.
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7.3.7 Closed form of the isotropic kernels of the Green’s function for gravita-
tional gradient

We continue deriving the closed form of the mass-density Green’s function for the gravita-
tional gradient tensor. Equation (7.89) implies that to express the kernels Krr(t, x), KrΩ(t, x)

and KΩΩ in a closed form, it is sufficient to find the closed form of the rr, rϑ and ϑϕ compo-
nents of the grad grad (1/L) tensor.

By differentiation Eq. (7.94) with respect to r, the rr component of grad grad (1/L) is[
grad grad

1

L

]
rr

=
∂2

∂r2

(
1

L

)
= − 1

L3
+

3

L5
(r − r′x)2

=
1

r3

(
− 1

g3
+

3(1− tx)2

g5

)
, (7.100)

where g is defined by after Eq. (7.94). The rϑ component of grad grad (1/L) is[
grad grad

1

L

]
rϑ

=
1

r

∂2

∂rϑ

(
1

L

)
− 1

r2

∂

∂ϑ

(
1

L

)
. (7.101)

The differentiation of Eq. (7.96) with respect to r gives

∂2

∂r∂ϑ

(
1

L

)
= cosα sinψ

r′

L3

(
1− 3r(r − r′x)

L2

)

=
1

r

∂

∂ϑ

(
1

L

)
− cosα sinψ

3rr′(r − r′x)

L5
. (7.102)

Hence, [
grad grad

1

L

]
rϑ

= − cosα sinψ
3r′(r − r′x)

L5

= − cosα sinψ
3t(1− tx)

r3g5
. (7.103)

The ϑϕ component of grad grad (1/L) is[
grad grad

1

L

]
ϑϕ

=
1

r2 sinϑ

∂2

∂ϑ∂ϕ

(
1

L

)
− cosϑ

r2 sin2 ϑ

∂

∂ϕ

(
1

L

)

=
1

r2

∂

∂ϑ

[
1

sinϑ

∂

∂ϕ

(
1

L

) ]
. (7.104)

Martinec (2003) showed that

∂

∂ϑ

(
1

sinϑ

∂

∂ϕ

)
= − 1

2
sin 2α sin2 ψ

∂2

∂(cosψ)2
. (7.105)

Making use of this differential identity in Eq. (7.104) and performing the second-order deriva-
tives of 1/L with respect to cosψ, that is

∂2

∂(cosψ)2

(
1

L

)
=

3r2(r′)2

L5
=

3t2

rg5
, (7.106)
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results in [
grad grad

1

L

]
ϑϕ

= − 1

2
sin 2α sin2 ψ

3t2

r3g5
. (7.107)

Finally, the comparison of Eq. (7.89) with Eqs. (7.100), (7.103) and (7.107), respectively, gives

Krr(t, x) = − 1

g3
+

3(1− tx)2

g5
,

KrΩ(t, x) = −
√

1− x2
3t(1− tx)

g5
,

KΩΩ(t, x) =
1

2
(1− x2)

3t2

g5
. (7.108)

These are the closed forms of the isotropic kernels of the mass-density Green’s function for
the gravitational gradient tensor.

7.3.8 Three types of gravitational gradients

Equation (7.89) in combination with Eq. (7.66) shows that the five independent components
of the gravitational gradient tensor Γ can be grouped into three second-order tensor as fol-
lows,

Γ = Γrr + ΓrΩ + ΓΩΩ . (7.109)

The tensors Γrr, ΓrΩ and ΓΩΩ can be referred to as the vertical-vertical, vertical-horizontal
and horizontal-horizontal gravitational gradients (Martinec, 2003; Bölling and Grafarend, 2005),
respectively, since their componential forms are

Γrr = Drr

[
err −

1

2
(eϑϑ + eϕϕ)

]
,

ΓrΩ = 2Drϑ erϑ − 2Drϕ erϕ ,

ΓΩΩ = Dϑϑϕϕ

(
eϑϑ − eϕϕ

)
− 2 Dϑϕ eϑϕ . (7.110)

In the polar coordinates (ψ, α), the components of the tensors Γrr, ΓrΩ, and ΓΩΩ evaluated
at the computation point are expressed by five radially-dependent functions,

Drr(r) =
κ

r3

∫
V
%(~r ′) Krr(t, cosψ) dV ,

 Drϑ(r)

Drϕ(r)

 =
κ

r3

∫
V
%(~r ′) KrΩ(t, cosψ)

 cosα

sinα

 dV ,

 Dϑϑϕϕ(r)

Dϑϕ(r)

 =
κ

r3

∫
V
%(~r ′) KΩΩ(t, cosψ)

 cos 2α

sin 2α

 dV . (7.111)
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Given the computation point, the gravitational gradient tensor Γ depends on the height of
this point above the Earth’s surface and on the Earth’s density distribution with respect to
the computation point. The former is expressed by the dependency of the isotropic kernels
Krr, KrΩ and KΩΩ on the radius of the computation point r via parameter t = r′/r. The
later is expressed by the mass density function %(~r ′) and the dependency of Krr, KrΩ and
KΩΩ on (i) the depth of mass element dm = %(~r ′)dV , via the radius r′ in parameter t, (ii)
the spherical distance ψ between the mass element dm and the computation point, and (iii)
the azimuthal direction α of mass element dm with respect to the computation point. In the
following two sections we explore the dependency of the Green’s functions on r, ψ and r′,
respectively.

7.3.9 Omission error of the downward-continued GOCE gravitational gradients

Let us first investigate the sensitivity of the GOCE gravitational gradients to their continua-
tion from the satellite’s altitude towards the Earth. Figure 7.21 plots values of the isotropic
kernels Krr(t, cosψ) (red solid line), KrΩ(t, cosψ) (green solid line) and KΩΩ(t, cosψ) (blue
solid line) evaluated by the closed forms of Eq. (7.108) for the angular distances 0 ≤ ψ ≤ 6

arc-deg and t = 0.96224, which corresponds to the GOCE perigee height of 255 km. The
graphs of the kernels are bell-shaped (terminology used by Eshagh, 2011) but with differ-
ent positions of the maximum values. The function Krr has its maximum at the compu-
tation point ψ = 0 arc-deg and decreases monotonically to zero with the increasing an-
gular distance ψ, whereas the functions KrΩ and KΩΩ vanish at ψ = 0 arc-deg, increase
their amplitudes for the increasing distance ψ, before reaching their maximum amplitudes
at ψmax ≈ 1.1 arc-deg and ψmax ≈ 1.8 arc-deg, respectively, and then monotonically decreas-
ing with the distance ψ. Quantitatively, the amplitude of the function Krr is smaller than
10−2 × Krr(t, 1) for the distances ψ > 3 arc-deg, while the functions KrΩ and KΩΩ have
still significant non-zero amplitudes from that distance, while their amplitudes are less than
10−2 × KrΩ(t, ψmax) and 10−2 × KΩΩ(t, ψmax) at the distances ψ > 10 arc-deg and ψ > 18

arc-deg, respectively.

Projecting these facts into the integrals of Eq. (7.111) tells us that the mass density be-
low the computation point, that is the density distribution around the point ψ = 0 arc-deg,
has the largest effect on the Γrr gravitational gradient , although a negligible effect on the
ΓrΩ and ΓΩΩ gravitational gradients. The density contribution to Γrr gradually decreases
with an increasing distance ψ, while the density contribution to ΓrΩ and ΓΩΩ first increases
with an increasing distance ψ, reaches its largest contribution at ψmax and then gradually
decreases with ψ. The density structure at the distances greater than 3 arc-deg from the
computation point may still contribute to the Γrr gravitational gradient by 1% of the con-
tribution from the density structure around the point ψ = 0 arc-deg. On the contrary, the
density structure at the distances ψ > 3 arc-deg up to ψ = 10 arc-deg and ψ = 18 arc-deg
may contribute to the ΓrΩ and ΓΩΩ gravitational gradients by an amount that is greater than
1% of the contribution from the mass density structure around the point ψmax, respectively,

When solving the inverse gradiometric problem for the unknown mass density distri-
bution, it implies that the Γrr gravitational gradient provides more localized information
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Figure 7.21: The full-spectrum isotropic kernels Krr(t, cosψ) (red solid line), KrΩ(t, cosψ)

(green solid line) and KΩΩ(t, cosψ) (blue solid line) evaluated by the closed forms of
Eq. (7.108) as functions of the angular distance ψ and the fixed computation-point height of
255 km. The black dashed lines show the truncated isotropic kernels computed by summing
the series of the Legendre polynomials of Eq. (7.91) up to the cut-off degree jmax = 220.

on the mass density distribution than the ΓrΩ and ΓΩΩ gravitational gradients. Hence, the
Γrr gravitational gradient may be more suitable for solving the inverse problem for den-
sity than the other gravitational gradients. In addition, for a chosen computational point,
the Γrr gravitational gradient contains the information on the mass density structure from
rather different regions than the ΓrΩ and ΓΩΩ gravitational gradients.

Figure 7.21 also shows the isotropic kernels Krr(t, cosψ), KrΩ(t, cosψ) and KΩΩ(t, cosψ)

(dashed lines) computed by summing the series of the Legendre polynomials of Eq. (7.91)
up to the cut-off degree jmax = 220 which is equal to the cut-off degree of the GOCO03S
global gravitational model (Mayer-Gürr et al., 2012). We can see that the graphs of the
truncated isotropic kernels differ very slightly from the graphs of the full-spectrum (that
is, the closed form) isotropic kernels; they are hardly distinguishable within the thickness
of lines. Quantitatively, the largest relative error of the truncated Krr with respect to the
closed-form Krr is 0.90% at ψ = 0 arc-deg. Likewise, the largest relative errors of truncated
KrΩ and KΩΩ are 0.53% and 0.44% at ψmax = 1.1 arc-deg and 1.8 arc-deg, respectively.

In geodesy, the term omission error refers to the unresolved or un-modelled part of the
Earth’s gravitational field due to the truncation of the spherical harmonic series used to rep-
resent the gravitational field. For the following discussion, we make a more generalized use
of this term by saying that the omission error is the gravitational signal that is not modelled.
Within this terminology, the omission errors of the truncated isotropic kernels Krr, KrΩ and
KΩΩ at the altitude of 255 km are 0.90%, 0.53% and 0.44%, respectively.

When using the GOCE gravitational gradients in lithospheric modelling, the isotropic
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kernels are often not represented in spectral forms of Eq. (7.91), but rather the closed form
in Eq. (7.70) of the mass-density Greens’ function is applied and the volume integral of
Eq. (7.91) for the gravitational gradient tensor Γ is discretized by various geometrical objects
(Fullea et al., 2008; Braitenberg et al., 2011; Uieda et al., 2011; Álvarez et al., 2012; Hirt et al.,
2012; Tsoulis, 2012; Grombein et al., 2013). If the discretization of the integral is performed in
a mesh with a fine discretization step ∆ such that the Nyquist frequency jN = π/∆ is much
higher than the cut-off degree jmax of the GOCE model, i.e., when jN � jmax, then the
forward-modelled gravitational gradients will contain a high-frequency (short-wavelength)
part that is missing in the GOCE observations, namely the omission error evaluated in the
previous paragraph. Since this error is relatively small at the GOCE altitude, it can be tol-
erated for a certain type of geophysical applications (Fullea et al., 2013). Alternatively, this
high-frequency part can be excluded from the modelling of gravitational gradients by re-
placing the closed-form Green’s functions of Eq. (7.108) by their bandwidth-limited forms
of Eq. (7.91).
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Figure 7.22: The same as Figure 7.21, but for the computation-point height of 50 km. The
truncated isotropic kernelsKrr,KrΩ andKΩΩ are now plotted by red, green and blue dashed
lines, respectively. The inverted triangles denote the maximum amplitudes of the kernels
KrΩ and KΩΩ.

Complementary to Fig. 7.21, Fig. 7.22 shows the isotropic kernels for t = 0.99221, which
corresponds to the computation-point height of 50 km. The graphs of the full-spectrum
isotropic kernels (solid lines) can be described in a similar way as those in Fig. 7.21 for the
computational point at the 255 km height. However, the functions decrease faster with an
increasing angular distance ψ than those in Fig. 7.21 which is a well-known fact from po-
tential field theory. Quantitatively, Krr, KrΩ and KΩΩ have amplitudes less than 1% of their
maximum amplitudes at the distances ψ > 0.6, ψ > 1.5 and ψ > 2.5 arc-deg, respectively.
Moreover, the amplitudes of the isotropic kernels for the computational point at the 50 km
height are significantly larger than those for the computational point at the 255 km height,
meaning that the gravitational gradient signals are amplified by the continuation from the
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satellite altitude towards the Earth’s surface.

What differs substantially are the graphs of the truncated isotropic kernels. Whereas at
the computational height of 255 km the full-spectrum and truncated isotropic kernels are
coincident within an omission error not larger than 0.9% of the maximum amplitudes, at the
computation height of 50 km the full-spectrum and truncated kernels differ significantly. An
advantage of the vertical-vertical Krr kernel with respect to the KrΩ and KΩΩ kernels is that
both the full-spectrum and truncatedKrr have maximum at ψ = 0◦, but the maximum value
is reduced 4 times when the kernel Krr is truncated at the degree jmax = 220. The difference
between the full-spectrum and truncated Krr kernels therefore gives the omission error of
the truncated Krr. We can see that the omission error has an amplitude comparable to that
of the full-spectrum Krr.

Similarly toKrr, the kernelsKrΩ andKΩΩ are reduced in amplitudes when omitting their
short-wavelength part, but in contrast to Krr, the positions of the maximum amplitudes
(denoted by inverted triangles) are shifted towards larger distances ψ from the observer.
Shifting the maximum values of truncated KrΩ and KΩΩ kernels means that the sensitivity
of ΓrΩ and ΓΩΩ gravitational gradients is transferred to the density structure at locations
different from those for the original, full-spectrum isotropic kernels. The difference between
the full-spectrum and truncated KrΩ and KΩΩ gives the omission error of the truncated ker-
nels. We can therefore see that downward continuation significantly amplifies this omission
error.

For the identification of geological units in unexplored parts of the world, it is advanta-
geous to continue the GOCE gravitational gradients from the satellite altitude downward to
(or close to) the Earth’s surface since the downward continuation amplifies the gravitational
gradient signals and better reflects the near-surface geological structure. Since the omission
error is also significantly amplified by the downward continuation, the forward geophys-
ical modelling must ensure that the omission error of the forward-modelled gravitational
gradients is the same as the omission error of the downward-continued GOCE observa-
tions. Only after this is the downward-continued GOCE observations able to be interpreted
in terms of geological structure. One way of performing this step is to pass the forward-
modelled gravitational gradients through the bandpass filter with the same bandwidth as
the GOCE gravitational gradients (e.g., Martinec, 1991). This approach has been applied by
Martinec (2013) when interpreting the downward-continued GOCO03S gravitational model
to refine a model of sedimentary rock cover in the southeastern part of the Congo Basin.

7.3.10 Sensitivity of gravitational gradients to the depth of density anomaly

Let us express the angularly dependent part of density %(~r ) in the polar coordinates (ψ, α)

as a series of spherical harmonics

%(~r ) =

∞∑
j=0

j∑
m=−j

%jm(r′) Yjm(ψ, α) . (7.112)

To analyze the sensitivity of the satellite gradiometric tensor to the depth of a mass density
anomaly source, a δ-like spherical sheet with a surface density distribution of Yjm(ψ, α) is
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placed in the Earth’s interior at the radius r0

%(~r ′) = σ0 δ(r
′ − r0) Yjm(ψ, α) , (7.113)

where σ0 = 1 kg m−2. Inserting this mass density model and Eq. (7.92) into Eq. (7.111), we
get

Drr,jm(r0, r) =
κ

r3

∫ π

ψ=0

∫ 2π

α=0

∫
r′
σ0 δ(r

′ − r0) Yjm(ψ, α)

×
∞∑
j1=0

(j1 + 1)(j1 + 2)

√
4π

2j1 + 1

(
r′

r

)j1
Pj10(cosψ) (r′)2 sinψ dr′dψ dα , (7.114)

where we have added the argument r0 and indices jm to theDrr to indicate thatDrr,jm(r0, r)

is the vertical-vertical gravitational gradient response (or Green’s function) to a simple den-
sity anomaly of the form given by Eq. (7.113). Making use of the sifting property of the delta
function and the orthonormality property of spherical harmonics yields

Drr,jm(r0, r) =
κσ0

r

(
r0

r

)j+2

(j + 1)(j + 2)

√
4π

2j + 1
δm0 . (7.115)

The other gravitational gradient responses in Eq. (7.111) can be arranged in a similar way,
obtaining Drϑ,jm(r0, r)

Drϕ,jm(r0, r)

 =

=
κσ0

r

(
r0

r

)j+2

(j + 2)
√
j(j + 1)

√
4π

2j + 1

(δm1 + δm,−1)

(−i)(δm1 − δm,−1)

 , (7.116)

and Dϑϑϕϕ,jm(r0, r)

Dϑϕ,jm(r0, r)

 =

=
κσ0

r

(
r0

r

)j+2 1

4

√
(j − 1)j(j + 1)(j + 2)

√
4π

2j + 1

(δm2 + δm,−2)

(−i)(δm2 − δm,−2)

 . (7.117)

One way to plot the ’D’ gravitational gradient responses is to express them relatively
to those for a mass density anomaly placed at the Earth’s surface, that is for r0 = a. For
instance, the normalized response for vertical-vertical gravitational gradient is

Drr,jm(r0, r)

Drr,jm(a, r)
=

(
r0

a

)j+2

δm0 . (7.118)
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Figure 7.23: The normalized response function (r0/a)j+2 for the harmonic degrees j = 2, 4,
10, 30, 90, 150 and 250.
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Likewise, the normalized ‘D’ response for the vertical-horizontal gravitational gradient is

Drϑ,jm(r0, r)

Drϑ,jm(a, r)
=

(
r0

a

)j+2

(δm1 + δm,−1) . (7.119)

The same ratio (r0/a)j+2 occurs at the other three normalized ’D’ gravitational gradient
responses. Figure 7.23 plots the normalized response function (r0/a)j+2 for the harmonic
degrees j = 2, 4, . . . , 250. This plot tells us what is the amplitude of the gravitational
gradient induced by an internal δ-like mass density anomaly as a function of the depth of
the anomaly which varies through the Earth’s mantle. The largest gravitational gradient
response is obtained for shallow mass anomalies. This behavior is further amplified as the
harmonic degree increases because of the attenuation effect due to the term (r0/a)j+2. The
vertical-vertical gravitational gradient response function does not depend on the azimuthal
order m, whereas the horizontal-vertical and horizontal-horizontal gravitational gradient
response functions depend on m = ±1 and m = ±2, respectively. Note that the normalized
response (Green’s) function of the static geoid, that is the case without the gravitational
contribution of boundary deflections due to the mantle convection, has the same form as
Eq. (7.118), see (Richards and Hager, 1984).

7.3.11 Summary

This contribution has been motivated by our effort to create an adequate mathematical tool
for analyzing the sensitivity of the satellite gradiometric data, as provided by the GOCE
mission, to the Earth’s internal density structure and to the downward continuation of the
satellite gravitational gradients. It has been found that an approach based on Green’s func-
tions is highly convenient for carrying out such an analysis. We express the Green’s func-
tions for gravitational gradients in the spectral form as series of tensor spherical harmonics.
This form of the Green’s functions can be used for representing the forward-modelled grav-
itational gradients when the GOCE gravitational gradients are continued from satellite’s
altitudes towards the Earth’s surface. Alternatively, by means of the addition theorems for
tensor spherical harmonics, the spectral forms are converted to closed spatial forms. These
two alternative forms provide a powerful tool for analyzing the omission error of the GOCE
data at the satellite altitudes and its amplification by the downward continuation. We show
that the omission error of the bandwidth-limited Green’s functions for the gradiometric data
at the GOCE altitudes does not exceed 1% in amplitude when compared to the full-spectrum
Green’s functions. This error may be tolerated for certain types of geophysical applications
(Fullea et al., 2013; Bouman et al., 2013). When continuing the gravitational gradients to-
wards the Earth’s surface, the omission error is significantly enhanced. We conclude that
the downward-continued GOCE gravitational gradients could be interpreted in terms of the
Earth’s mass density structure only after filtering a short-wavelength content of the forward-
modelled gravitational gradients such that the omission error of the downward continued
GOCE gravitational gradients is equal to the omission error of the forward-modelled gravi-
tational gradients.

The spectral forms of the gravitational gradients additionally allow us to calculate the sen-
sitivity of the satellite gravitational gradients to the depth of a density anomaly, expressed in
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terms of the harmonic degree of the internal density anomaly. We show that the largest grav-
itational gradient response is obtained for shallow mass anomalies, and is further amplified
as the harmonic degree increases. That is why the GOCE satellite gravitational gradients is
able to improve the modelling of the Earth’s crustal and lithospheric structure. In addition,
if gravitational gradient are continued towards the Earth’s surface, the gravitational gradi-
ent signal is amplified and better reflects the near-surface geological structure, which may
be an advantage for geological mapping in worse-surveyed regions.

7.4 Independent crustal thickness estimates through Euler decon-
volution

Geophysical prospection uses Euler deconvolution as one of its tools. The process is semi-
automated and supports interpretation of magnetic field data, gravimetric data or gravita-
tional gradient data. As results, Euler deconvolution delivers probable locations of magnetic
or gravity anomalies.

The method was proposed for magnetic surveys by Hood (1965). Because of the high
computational demands, it took until the 1980s, when computers became more accessible
and more powerful, that the theory was developed further. This was done by Thompson
(1982) who implemented the first computer program to evaluate magnetic profile data by
Euler deconvolution. He already mentioned a possible 3-dimensional implementation of
the algorithm which was then published by Reid et al. (1990).

In the 1990s, Euler deconvolution was applied to gravity data for the first time and en-
hancements were made (Marson and Klingelé, 1993; Durrheim and Cooper, 1998; Keating,
1998). Since the end of the 1990s, it was also applied to gravitational gradients (Pawlowski,
1998; Zhang et al., 2000; Cooper, 2002; Stavrev and Reid, 2010).

At the end of 2009, satellite gravitational gradient data of near global coverage became
available by the GOCE mission. This development led to the question if it was possible to
apply Euler deconvolution to those data as well.

In a first attempt, (Tedla et al., 2011) tried to use GOCE data to estimate the depth of the
Mohorovičić discontinuity (for short: Moho) over Africa. They claimed that their results
were verified by seismic data, however, Reid et al. (2012a) pointed out several methodolog-
ical mistakes.

To estimate the location of the Moho was also one task of the GOCE-GDC project. How-
ever, this question could not be solved yet. Due to several new – still not answered – ques-
tions (see Section 7.4.7), we could not conclude this work package.

In the following sections, we present the theoretical background of Euler deconvolution.
Sections 7.4.1 and 7.4.2 summarize the way from Euler’s homogeneous function theorem
to standard Euler deconvolution as it is presented in the literature. Afterwards, in Sections
7.4.3 and 7.4.4, we introduce different approaches of how to deal with measurement errors
during the estimation process. In Section 7.4.5, we have a look at one way of gridding GOCE
gradient data on a sphere – an action which becomes necessary in the Euler deconvolution
process. In Section 7.4.5, we quickly mention less important, but necessary byproducts for
this research without going into detail. We finish with our conclusion and new, open ques-
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source gravity N magnetic N

point, sphere 2 3

line, horizontal cylinder 1 2

fault (small step) 0 1

contact −1 0

Table 7.2: Structural indices for gravity and magnetics (Fitzgerald et al., 2004; Reid et al.,
2012b).

tions in Section 7.4.7.

7.4.1 Euler’s homogeneous function theorem

Euler’s homogeneous function theorem in its general form in a 3-D Cartesian coordinate
system is given by

r · ∇f = nf , (7.120)

with the gradient operator ∇ and the distance from the origin r = ||r||. All functions f ,
that satisfy Eq. (7.120), are called homogeneous of order n. It can be shown easily that the
gravitational potential of a point mass f = V = −Gm

r satisfies Eq. (7.120) with the order of
n = −1. Any spatial derivative of a homogeneous function is again homogeneous, however,
the order is decreased by one (Blakely, 1995):

(r ·∇) (∇f) = (n− 1) (∇f) . (7.121)

7.4.2 Standard Euler deconvolution

Euler deconvolution is based on Euler’s homogeneous function theorem. From Eq. (7.120),
the more commonly used form

(x− x0)
∂f

∂x
+ (y − y0)

∂f

∂y
+ (z − z0)

∂f

∂z
= n (∆f + f̄) , (7.122)

is derived, with the measurement position (x, y, z), the position of the field source (x0, y0, z0),
n the order and f = ∆f+ f̄ . Here, f̄ is a constant base field and ∆f the remaining difference
to the measured field f (Thompson, 1982).

Usually, it is defined N := −n and this value is then called structural index (Thompson,
1982). According to the kind of source, the structural index takes different values (see Table
7.2).

Reid et al. (1990) showed that Eq. (7.122) should be written as

(x− x0)
∂f

∂x
+ (y − y0)

∂f

∂y
+ (z − z0)

∂f

∂z
= C , (7.123)

if a structural index of zero is introduced (or, as a first iteration step, to get an approximate
solution if f is unknown).
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Analogous to Eq. (7.122), we derive from Eq. (7.121) the three equations for the gravita-
tional gradients Tij (i, j = x, y, z):

(x− x0) Txx + (y − y0) Txy + (z − z0) Txz = (n− 1) (∆Tx + T̄x) , (7.124)

(x− x0) Tyx + (y − y0) Tyy + (z − z0) Tyz = (n− 1) (∆Ty + T̄y) , (7.125)

(x− x0) Tzx + (y − y0) Tzy + (z − z0) Tzz = (n− 1) (∆Tz + T̄z) . (7.126)

Because of the tensor properties, Txy = Tyx, Txz = Tzx, Tyz = Tzy (symmetry) and Txx +

Tyy + Tzz = 0 (Laplace equation) holds. Usually, here it is defined N := −(n− 1) and again
N is called the structural index (see Table 7.2). However, the advantage of the redefinition
is that Eq. (7.124) becomes of the same form as Eq. (7.122).

In Reid et al. (1990), the Euler deconvolution processing steps are given:

1. Calculate (or measure) the gradients ∂f
∂x , ∂f∂y and ∂f

∂z .

2. Locate a square window within the grids of gradient values and field values of size
3×3 grid points or greater. A 10×10 window produces good results and is acceptably
fast, but high resolution data yield good results with smaller windows.

3. a) For each desired nonzero structural index, use all points in the windows to solve
Euler’s equation (7.122) for the source position (x0, y0, z0) and a background value
f̄ using Moore-Penrose inversion to obtain least-squares estimates. A 10 × 10

window provides 100 equations, from which the four unknowns and their un-
certainties (standard deviations) are obtained. Record the solution if the depth
uncertainty is less than, say, 15 % of the calculated depth.

b) For a structural index of zero, proceed as for 3, but use Eq. (7.123) and solve for
source position and the arbitrary offset value C.

4. Repeat steps 2 and 3 for some or all possible window positions, including overlaps.

5. Plot maps of the solutions, one for each structural index. Each solution is plotted
at its plan (x, y) position using a symbol size proportional to depth z. This display
method was adopted because it is easily implemented, cheaply printed, and readily
understood.

According to the steps given above, a window of sizem×m is slid over the data, resulting
in m2 equations. E.g., for the z-component, a reformulation in vector-matrix notation yields


Txz,1 Tyz,1 Txz,1 N

...
...

...
...

Txz,m Tyz,m Txz,m N




x0

y0

z0

T̄z

 =


xTxz,1 + yTyz,1 + zTzz,1 −N∆Tz,1

...
xTxz,m + yTyz,m + zTzz,m −N∆Tz,m

 ,

(7.127)
see (Mushayandebvu et al., 2004). Now Eq. (7.127) is of the form

η = A ξ + e , (7.128)
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with the vector of ”observations” η, design matrix A, vector of parameters ξ and the residual
vector ~e. The problem is overdetermined and hence treated by the least squares method
(Gauß-Markov model)

η = Aξ + e =⇒ ξ̂ = (ATA)−1ATη ,

or, as mentioned in the steps above, the Moore-Penrose inversion is used to avoid computing
problems with matrices which are singular or near-singular.

Each window position delivers one estimate of a possible source location. Those estimates
tend to cluster in zones of contrast in a field, hence such cluster zones might be of geophysi-
cal interest (Blakely, 1995). On the one hand, the window size should be chosen big enough
to cover a single source gravitational effect. On the other hand, it should be small enough to
exclude effects from multiple sources (Reid et al., 1990).

However, the standard Euler deconvolution, as presented above, disregards the fact that
the gravitational gradients are measured quantities. Measured quantities are never error-free.
As the design matrix consists mainly of such measured quantities, the included errors lead
to an inaccurate estimation of the parameters (Roth, 2012a).

7.4.3 Total least squares (TLS)

A first method in dealing with an erroneous design matrix, is TLS (Plešinger, 2008; Hnětynková
et al., 2011). In terms of the TLS method, Eq. (7.128) becomes

η = (A − E) ξ + e ,

or, in vector-matrix notation

[
(A−E) (η − e)

] [ ξ

−1

]
= 0 .

This equation can be solved for the unknown parameters ξ, e.g., by singular value decom-
position [

A η
]

=
[

UA uη

] [ SA 0

0 sη

][
VAA vAη

vηA vηη

]−1

,

which yields the solution vector

ξ̂ = vAη v−1
ηη .

The solution vector contains the coordinates of a probable mass anomaly and a base-field
value as before (Roth, 2012a).

One benefit of using TLS is found in its computational speed which is nearly as fast as for
the normal Gauß-Markov least-squares approach. However, the errors are minimized by
the Frobenius norm and not the Euclidean norm. If a usage of the TLS with Frobenius norm
instead of the Gauß-Markov model with Euclidean norm has advantages or disadvantages
is still in research.
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7.4.4 Gauß-Helmert model

In geodesy, the Gauß-Helmert model is considered as the better choice in terms of estimation
precision. In this model the measured quantities’ errors can also be considered. However,
the drawback is that matrices get several times larger due to the additional conditions. We
also want to retrieve variance-covariance information, hence we need one inversion of a
matrix per window. For the standard Euler deconvolution the size of that matrix depends
only on the amount of unknown parameters, i.e., matrix size is 4 × 4. The matrix size of
the extended Euler deconvolution depends also on m (the amount of observations in each
window), i.e., the matrix size increases to (4m + 4) × (4m + 4). This leads to an increase of
computational time by the factor of 60.

Measured – and as such stochastic – quantities are x, y, z, δVij ,∆δVi; unknown quantities
are x0, y0, z0, T̄i (i, j = x, y, z). Exemplarily, out of the three possible Eqs. (7.124), let us
examine again the z-component, while taking into account the stochastic quantities (e.g., x
becomes now x+ ex)

(x+ ex − x0)(δVxz + eδVxz) + (y + ey − y0)(δVyz + eδVyz)

+ (z + ez − z0)(δVzz + eδVyz) + N (∆δVz + eδVz + T̄z) = 0 . (7.129)

Equation (7.129) is not linear any more, hence, linearization becomes necessary. Addition-
ally, we can assume that the errors of (x, y, z) are very small (the position of GOCE is known
from GPS positioning with a high accuracy, i. e., we set ex = ey = ez = 0). Rewritten in
matrix-vector notation, we get

[
−(δVxz +

0
eδVxz) −(δVyz +

0
eδVyz) −(δVzz +

0
eδVzz) N

]


∆x0

∆y0

∆z0

∆T̄z



+
[

(x+
0
ex −

0
x0) (y +

0
ey −

0
y0) (z +

0
ez −

0
z0) N

]

eδVxz
eδVyz
eδVzz
e∆δVz


+ (x− 0

x0) δVxz + (y − 0
y0) δVyz + (z − 0

z0) δVzz +N(∆δVz +
0

T̄ z) = 0 . (7.130)

Here, the symbol
0· on top of a variable indicates, that this variable is evaluated at the Taylor

point. Equation (7.130) is nearly in the form of the Gauß-Helmert model, so we can write

A ∆ξ + BT e + w = 0 , (7.131)

with

BT

m×4m
=


X1 0 . . . 0 Y1 0 . . . 0 Z1 0 . . . 0 N 0 . . . 0

0 X2 0 . . . 0 Y2 0 . . . 0 Z2 0 . . . 0 N 0 . . .
...

. . .
...

. . .
...

. . .
...

. . .

0 . . . 0 Xm 0 . . . 0 Ym 0 . . . 0 Zm 0 . . . 0 N

 ,
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where Xi = xi +
0
ex,i −

0
x0,i, Yi = yi +

0
ey,i −

0
y0,i, Zi = zi +

0
ez,i −

0
z0,i (with i = 1, . . . ,m) and

eT
4m×1

=
[
eδVxz ,1 . . . eδVyz ,1 . . . eδVzz ,1 . . . eδVz ,1 . . .

]
.

The matrix A (of size m × 4) and vector ~w (of length m) can be derived directly from
Eq. (7.130). Minimizing the Legendre function

L(∆ξ, e,λ) =
1

2
eTe + λT(A∆ξ + BTe + w) −→ min

∆ξ,e,λ
,

leads us to the linear system of equations 0 0 AT

0 I B

A BT 0


 ∆ξ̂

ê

λ̂

 =

 0

0

−w

 , (7.132)

whose solution is refined iteratively, until the vector of increments ∆ξ̂ becomes small enough
to meet the accuracy threshold. If the maximum number of iterations is met, we consider
the result as divergent, i.e., it will be discarded. The initial values of the variables evaluated
at the Taylor point are obtained by a preceding standard Euler deconvolution (Roth et al.,
2013).

7.4.5 Gridding of data

As mentioned in Section 7.4.2, standard Euler deconvolution uses data on a regular grid.
This involves an interpolation of the irregularly spaced measurement data. However, from
a geodetic point of view, an interpolation always distorts the data. Hence, such a step should
be avoided.

According to Euler’s equation (7.122), it might not be necessary that the data positions
are on a regular grid, i. e., the interpolation step might be skipped. However, the size of the
sliding window should not change too much.

It is easy to part a plane into a regular grid. But the GOCE satellite is orbiting Earth,
i. e., the measurement points lie on a curved surface and are ordered chronologically. In
conclusion, we need to project a grid on those data to get the data collected in windows for
the Euler deconvolution process.

The simplest approach would be to divide the data according to Earth’s already present
latitude-longitude grid. This, however, has the disadvantage, that—depending on latitude—
the window does not cover an equally sized area. Hence, we follow the more sophisticated
approach of a geodesic sphere (see Fig. 7.24).

Figure 7.24: Different steps of a geodesic sphere – starting with an icosahedron (step 0) on
the left and quadrupling the number of faces in each next step (Roth et al., 2013).
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Starting with an icosahedron, whose top and bottom vertices coincides with the poles, we
first sort the data to its 12 faces. Afterward, we divide each face into four new ones whose
vertices are projected on the surface of the sphere. Again, we sort the data of the face to the
four new faces. The last two steps are repeated until we reach the desired resolution. Hierar-
chical sorting speeds up the program enormously. E.g., instead of checking all 12x44 = 3072

faces of a plain ”step 4” geodesic sphere where an entry belongs (worst case scenario), for
hierarchical sorting we need to check in total only 12 + 4x4 = 28 faces but at different step
levels.

We wrote a C-library, which is based on the ideas of Mantyla (1988) and can additionally
handle our data and the subdivisions of the icosahedron. The whole data structure is re-
alized by pointers like the scheme in Fig. 7.25 illustrates. Using pointers for the data gives
us the benefit that the amount of copied data is much lower (e. g., 8 Byte for a pointer in
comparison to around 100 Byte per complete entry) (Roth et al., 2013).

Figure 7.25: Data structure in the ”geodesic” library (Roth et al., 2013).

It was intended to enhance this concept for a better structure, i.e., the data windows
should resemble a circle more closely: six triangles (five at the original corners of the icosa-
hedron), which have contact in one point, should be combined to hexagons (or pentagons).
However, due to a lack of time, we could not implement this concept.

7.4.6 Related research/programming of minor importance

• GOCEXML2ASCII, a fast parser for GOCE XML Level 2 data (Roth, 2012b).

• Implementation of a function to save data from a C-program in MATLAB’s .mat-
format (not published).
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7.4.7 Results, conclusions and open questions

In Fig. 7.26, the results of the three Euler deconvolution methods are depicted. Those results
look very similar, but their close inspection reveals differences. In comparison to standard
Euler deconvolution, the location of the TLS results move slightly. Most probably, this is due
to the usage of the Frobenius norm in the estimation process. Visually, the Gauß-Helmert
results are locally stable but more results are removed due to a large standard deviation and
also because the iteration limit is reached.

The point colour in Fig. 7.26 represents the distance from Earth’s mass centre. However, a
look at the scale indicates that a part of the results does not make sense, i.e., results are lying
”outside” the Earth.

The results show a structure which – not fully but at least partly – correlates to the topog-
raphy of Africa. How much topography is estimated in the results, or, if we could meet our
goal to estimate the Moho, needs to be evaluated.

So far, the results can be considered as non-interpretable. This is mainly due to the fact
that Euler deconvolution in combination with GOCE gradient data is not yet fully under-
stood. Hence, further research on this topic is necessary.

In conclusion, Euler deconvolution looks promising on GOCE data, however, the re-
sults obviously show that many open questions regarding Euler deconvolution still remain.
Those questions must be clarified first to get reliable and interpretable results:

Window size. It is not investigated to the last detail and not presented here, but results lead
to the conclusion that the window size is connected to the depth, one can ”look” into
Earth. I.e., the bigger the window, the deeper the look, or vice versa, the smaller the
window, the shallower the look.

Structural index (SI, N ). According to the formulation, for point masses, the SI should be
equal 2. However, for other geometries this changes. This parameter is not completely
understood on our side, why and how (i.e., on which scientific foundation other than a
feeling from the guts) other researchers are choosing its value.

Base field (f̄ ). This parameter is estimated. However, it did not become entirely clear why
this parameter was necessary and how to interpret it. Neighbouring windows might
get differing values, which is contrary to the meaning ”base field” in our opinion.

Gridding 1. Following the procedure for standard Euler deconvolution, the data is inter-
polated to a regular grid in a plane. Is this step really necessary? If yes, why? Or,
differently asked, how does the spatial (and/or temporal) data distribution influence
Euler deconvolution?

Gridding 2. For GOCE gravitational gradients, obviously a plane is not the right choice as
a basic surface for the data grid. Is our approach to make a regular grid on a sphere a
good choice?

Missing gravity vector data. According to standard Euler deconvolution, if the gravity vec-
tor data are not available – like in our case that we only have measured gravitational
gradient tensor data – , N = 0 is assumed which results in a constant C. Is such
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Figure 7.26: Results of standard Euler deconvolution (top-left), Total Least Squares Euler
deconvolution (top-right) and Gauß-Helmert Euler deconvolution (bottom).
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an approximation of gravity really applicable or is it feasible to calculate the missing
gravity vector from a model? Or, are there other (better) ideas how to deal with such
a situation?

Coordinate system. Euler deconvolution is usually implemented in a Cartesian coordinate
frame. However, it does not work properly for the Earth. Is it better to use spheri-
cal/ellipsoidal coordinates and accordingly adapted equations instead?

Gauß-Markov↔ Gauß-Helmert↔ Total Least Squares. Which of the models gives better
results? (By method, Total Least Squares or – even more – Gauß-Helmert should pro-
duce better results).

Invariants. Does incorporating some of the invariants, i.e.,

I1 = Vxx + Vyy + Vzz = 0 ,

I2 = − 1

2
(V 2

11 + V 2
22 + V 2

33) − V 2
12 − V 2

13 − V 2
23 ,

I3 = V11 V22 V33 + 2V12 V13 V23 − V11 V
2

23 − V22 V
2

13 − V33V
2

12 ,

as data or as conditions to the adjustment process produce better results?

GOCE gradients. Is it necessary to apply Euler deconvolution to the full spectrum of the
data, i. e., do we need to high-pass filter the GOCE gradients to remove the lower
frequencies and augment them by low-pass filtered, computed “GRACE gradients”,
as done within this project? Or, can we apply Euler deconvolution directly to band-
pass filtered, GOCE-only data?

Topography etc. Would it be a good idea to remove topographic effects and other modelled
quantities from the GOCE gradients to be able to get usable results of Euler deconvo-
lution? Which spatial resolution of the models is necessary in this case?
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8 Impact assessment report

8.1 Introduction

8.1.1 Purpose of the project

The Earth’s gravitational field is a key characteristic of the Earth system. As such, gravita-
tional field information has always been at the core of geophysical research. Since the ad-
vent of satellite gravimetry, bringing global coverage and homogeneous accuracy, although
at moderate resolution, new avenues of geophysical research have opened. The recent First
International GOCE Solid Earth Workshop (16-17 October 2012, Enschede, The Netherlands),
is testimony to the gradual acceptance by the solid Earth research community of satellite
gradiometry in general and of GOCE data in particular.

Nevertheless, at the onset of the GOCE-GDC project the issue whether geophysical mod-
eling and geophysical understanding can be improved through GOCE data was indeed a
relatively open question. The project’s outcome, as laid out in the Final Report, is broadly af-
firmative. The purpose of this Impact Assessment Report is to elucidate the utility of GOCE
satellite gravitation for solid Earth research and, moreover, to critically scrutinize the added
value of GOCE gravitational gradients beyond existing gravitational field knowledge.

8.1.2 Study areas of the project

The scope of the GOCE-GDC project was to improve currently available regional geophys-
ical models of the upper mantle and crust over two distinct geographical areas, selected by
the research team. The areas are distinct in terms of geophysical setting and in terms of data
availability.

Study area A – Reykjanes Ridge

With the launch of the GOCE satellite, the study of seamounts, plateaus and basins be-
comes feasible (ESA, 1999). Mid-ocean ridges are key areas for plate tectonics because of
the creation of new crust and the generation of ridge push that partly drives plate motion.
The sharp features of the ridges are clearly visible in maps of gravity anomalies over the
oceans (Sandwell and Smith 1997). This makes them ideal targets for studying the impact of
GOCE gravitational gradients on solid Earth geophysics. The Reykjanes Ridge, south-west
of Iceland (15–35◦ W, 53–65◦ N) as the small-scale study area was selected. The funda-
mental geophysical problem is the origin of the V-shaped ridge (Hey et al., 2010; Hartley

167
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et al., 2011). Within the project, the model of (Turcotte and Schubert, 2002) is used as an
initial geophysical model that predicts a thickness of the lithosphere and its mass density
as a function of distance from the ridge. This model is used to investigate the sensitivity of
gradient products produced within the project to parameters in the model of (Turcotte and
Schubert, 2002).

Study area B – Congo Basin

The African continent, in particular due the Kaapvaal craton, the Tanzania craton, the Congo
Basin and the East African Rift, is one of the best natural laboratories in the world for study-
ing the lithospheric mantle, given the wealth of xenolith and seismic data that exist for
this continent. The Southern African Magnetotelluric Experiment (SAMTEX) was initiated
(September 2003) to complement these datasets and to provide further constraints on phys-
ical parameters of the lithospheric mantle in this region by obtaining information about
regional 3-D electrical conductivity variations. Comparisons of seismic wave velocities at
various depths have been made between a new high-resolution (1.5 arc-deg) seismic model,
derived from inversion of surface wave arrivals from events along continental paths, with
new images of the electrical conductivity (including the use of data from SAMTEX). These
comparisons reveal correlations at both large and small scales, defined quantitatively by
a quadratic regression between log(resistivity) and seismic velocity, and the comparisons
indicate that both parameters are functions of the same parameters, namely temperature,
physical state, magnesium number and composition. In this study area, gradient products
of the project were particularly applied to derivation of a refined model of sedimentary rock
cover of the Congo Basin based on the global sedimentary model of Laske and Masters
(1997) and the regional model of Kadima, Ntabwoba and Lucazeau (2011).

8.1.3 Questionnaire

Despite the positive findings of the GOCE-GDC project, we want to scrutinize its results
along the lines of the following concrete questions:

• Could GOCE gradients sensibly be used in geophysical models? All components of
them?

• Has our geophysical understanding improved due to GOCE?

• Do in-orbit gradients (measured plus augmented in lower bandwidth) contain more
information than already captured by the GOCE-only or the combined GRACE-GOCE
spherical harmonic models?

• If so, has it been demonstrated that such surplus information is meaningful for geo-
physics?

These questions, although not all can be answered in detail, are addressed in the following
chapters.
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8.2 Utility of GOCE gradients for geophysical modelling

The question whether GOCE gravitational gradients contribute in a meaningful and sub-
stantial way to geophysical modelling is approached here from two directions. In the first
section concrete results from the case study area A (Reykjanes Ridge) are shown. It is
demonstrated that GOCE allows to constrain the thermal expansion coefficient α and the
thermal diffusivity κ through a minimization of RMS misfit between model and observa-
tions. All 4 precise gravitational gradients are employed. The second section provides an
analytical discussion on the sensitivity of gradients towards local density distribution.

For case study area B (Congo Basin), only the vertical-vertical gravitational gradient has
been used as it provides more localized information on the density distribution. Thus, only
this gradient of the GOCE gravitational model was interpreted over the southeastern part
of the Congo Basin, cf. Final Report, since we aimed to refine the published model of sed-
imentary rock cover. However, future work on this topic will deal with the simultaneous
interpretation of the vertical-horizontal and horizontal-horizontal gravitational gradients of
the GOCE gravitational model in terms of a near-surface density structure.

8.2.1 Reykjanes Ridge

In order to find out if GOCE gravitational gradients are useful for geophysical modelling,
we constrain the free parameters in the geophysical model for the Reykjanes Ridge. A grid
search is performed to find the parameters for which the model best fits the gravitational
gradients from the GOCO03S global gravitational model at satellite altitude. As free pa-
rameters we select the thermal expansion coefficient α and the thermal diffusivity κ as they
are the most important parameters to constrain the shape of the geotherms. In the absence
of meaningful error estimates (that do exist for the global gravitational model but not for
the in-orbit gravitational gradients) the RMS is defined as quality parameter instead of the
χ2-misfit:

RMS =

√
1

N
(o−m)2 , (8.1)

where o is the observation, m is the model prediction and N is the number of observations.
We use all observations along the perpendicular line across the ridge in Figure 8.1. The
RMS is shown in Figure 8.3 for the four gradients that can be measured with GOCE. The
maximum degree of 150 in agreement with Figure 8.2.

In the contour plot the darkest contour line encompasses the combination of α and κ

which gives the smallest RMS values. There is a trade-off between α and κ: a low value
for α requires a small value for κ and vice versa. At small values of α the contour lines are
nearly vertical, indicating that the best fit is not sensitive anymore to κ.

The fact that non-trivial conclusions can be drawn demonstrates that GOCE gravitational
gradients can be used in geophysical modelling. In constraining the geophysical model, the
model with minimum RMS is searched.

Does a difference in the RMS mean that there is more information in the observed gradi-
ents than in the global gravitational models? To answer that question requires information
about errors in the data and uncertainty (or at least the number of degrees-of freedom) in the
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Figure 8.1: Location of the line perpendicular to the ridge that is used for comparison of
model predictions and observations.

Table 8.1: Mantle temperature found in literature.

Mantle temperature Reference

1200 ◦C Marquart et al. (1999)
1330 ◦C Poore et al. (2011)
1637 ◦C Putirka (2005)

model. The uncertainty in the model consists of all the variation in the model predictions
that arises from the variation in the input (the fixed parameters, all parameters except for α
and κ), and all approximations inherent in the model.

To estimate the uncertainty due to model input uncertainty, the vertical gravitational gra-
dient is computed for fixed α and κ, and variation in the input parameters. Temperature and
density are varied according to ranges in Table 8.1 and Table 8.2. θ is varied from 0.03 to 0.3,
the minimum degree is varied from 5 to 25, the maximum age of the ridge is varied from 60
to 100 million years (for a spreading-rate of 1 cm/a this translates into a maximum distance
of the ridge of 600 to 1000 km), spreading rate of 1 to 1.2 cm/a. The resulting gravity gradi-
ents at MOS and at 100 km altitude are shown in Figure 8.4. The variation represented by the
spread in the curves is a conservative estimate of the uncertainty in the model predictions
due to model input error. It is conservative because the bounds on some of the parameters
(temperature) are probably tighter than the range used here. Still the improvements coming
from the GOCE global gravitational models or the GOCE derived gravitational gradients
should be seen in the light of these uncertainties.

The RMS for different components of the tensor were plotted in Figure 8.3. The pattern for
Txx, Tyy and Tzz components is similar, the Txz component prefers smaller values of α and κ.
As the short-wavelength differences are smoothed out at MOS, the figure is also plotted for
the Txx and Tzz components at 100 km altitude. With the signal increase from 250 to 100 km

altitude, the RMS value is also increased. The region of smallest misfit has moved to the
top-right corner, meaning larger values of the parameters are preferred, which is more in
line with the generic cooling-plate model.
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Figure 8.2: Tzz for varying maximum spherical harmonic degree at 250 km (top left), 100 km

(top right) and 0 km.

Table 8.2: Mantle density values from literature.

Mantle density Reference Comment

3215–3240 Jacoby et al. (2007) Best-fit to gravity data
3300 Ito et al. (1999) Reference in a model
3330 Bonatti et al. (2003)
3150± 60 Menke (1999) (as found in Kelley (2009))
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Figure 8.3: RMS between modeled gradients and gradients from GOCO03S at MOS for
different values of thermal expansion coefficient α and thermal diffusivity κ. The maximum
spherical harmonics degree is 150.
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Figure 8.4: left: Tzz computed at satellite level (left) and at 100 km altitude (right) with vari-
ations in model input parameters except α and κ.



174 8 Impact assessment report

Figure 8.5: RMS between modeled gradients and gradients from GOCO03S at 100 km alti-
tude for different values of the thermal expansion coefficient α and thermal diffusivity κ.
The maximum spherical harmonics degree is 250.
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8.2.2 Sensitivity analysis: Green’s functions for mass densities

Figure 8.6 plots the isotropic kernels (Green’s functions) Krr(t, cosψ), KrΩ(t, cosψ) and
KΩΩ(t, cosψ) of the vertical-vertical Γrr, vertical-horizontal ΓrΩ and horizontal-horizontal ΓΩΩ

gravity gradients evaluated by the closed forms,

Krr(t, x) = − 1

g3
+

3(1− tx)2

g5
,

KrΩ(t, x) = −
√

1− x2
3t(1− tx)

g5
,

KΩΩ(t, x) =
1

2
(1− x2)

3t2

g5
. (8.2)

(cf. Final Report, Eq. 7.94), for the angular distances 0 ≤ ψ ≤ 6 arc-deg and t = 0.96224

which corresponds to the GOCE perigee height of 255 km. The graphs of the kernels are
bell-shaped but with different positions of the maximum values. The function Krr has its
maximum at point ψ = 0 arc-deg and decreases monotonically to zero with increasing an-
gular distance ψ, whereas the functions KrΩ and KΩΩ vanish at ψ = 0 arc-deg, increase
their amplitudes for the increasing distance ψ, before reaching their maximum amplitudes at
ψmax ≈ 1.1 arc-deg and ψmax ≈ 1.8 arc-deg, respectively, and then monotonically decreasing
with distanceψ. Quantitatively, the amplitude of the functionKrr is less than 10−2×Krr(t, 1)

for distances ψ > 3 arc-deg, while the functions KrΩ and KΩΩ have still significant non-zero
amplitudes from that distance, while their amplitudes are less than 10−2×KrΩ(t, ψmax) and
10−2 ×KΩΩ(t, ψmax) at the distances ψ > 10 and ψ > 18 arc-deg, respectively.

Projecting these facts into the integrals

Drr(r) =
κ

r3

∫
V
%(~r ′) Krr(t, cosψ) dV , Drϑ(r)

Drϕ(r)

 =
κ

r3

∫
V
%(~r ′) KrΩ(t, cosψ)

 cosα

sinα

 dV ,

 Dϑϑϕϕ(r)

Dϑϕ(r)

 =
κ

r3

∫
V
%(~r ′) KΩΩ(t, cosψ)

 cos 2α

sin 2α

 dV . (8.3)

(cf. Final Report, Eq. 7.97), for gravitational gradients tells us that the mass density below
the computation point, that is the density distribution around the point ψ = 0 arc-deg, has
the largest effect on Γrr gravitational gradient, although a negligible effect on ΓrΩ and ΓΩΩ

gravitational gradients. The density contribution to Γrr gradually decreases with increasing
distance ψ, while the density contribution to ΓrΩ and ΓΩΩ first increases with the increasing
distance ψ, reaches its largest contribution at ψmax and then gradually decreases with ψ.
The density structure at the distances greater than 3 arc-deg from the computation point
may still contribute to Γrr gravitational gradient by 1% of the contribution from the density
structure around the point ψ = 0 arc-deg. On the contrary, the density structure at distances
ψ > 3 arc-deg up to ψ = 10 arc-deg and ψ = 18 arc-deg may contribute to ΓrΩ and ΓΩΩ

gravitational gradients by an amount that is greater than 1% of the contribution from the
density structure around the point ψmax, respectively.
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When solving the inverse gradiometric problem for mass density distribution, it implies
that Γrr gravitational gradient provides more localized information on the density distribu-
tion than ΓrΩ and ΓΩΩ gravitational gradients. Hence, the Γrr gravitational gradient may
be more suitable for solving the inverse problem for density than the other gravitational
gradients. In addition, for a chosen computational point, Γrr gravitational gradient con-
tains the information on the density structure from rather different regions than ΓrΩ and
ΓΩΩ gravitational gradients. In conclusion, one can state that a difference in information
content between the gradient components definitely exists. It is a delicate matter, though, to
incorporate all gradient components in geophysical models.
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Figure 8.6: The full-spectrum isotropic kernels Krr(t, cosψ) (red solid line), KrΩ(t, cosψ)

(green solid line) andKΩΩ(t, cosψ) (blue solid line) evaluated by the closed forms of Eq. (8.2)
as functions of the angular distance ψ and the fixed computation-point height of 255 km. The
black dashed lines show the truncated isotropic kernels computed by summing the series of
Legendre polynomials up to the cut-off degree jmax = 220.

8.3 Gridded GOCE gravitational gradients

The project was focused on the geophysical research using combined gravitational gradients
with a low-frequency content from GRACE data (or GRACE global gravitational models)
and a high-frequency signal from GOCE. These data sets were merged together applying
a band-pass filtering, while the result is the state-of-the-art gravitational gradients in GRF
along the real orbit. If these data would be used for estimating harmonic coefficients, the
results should – ideally – be nearly the same as that from a combination of GRACE and
GOCE normal matrices. Thus, we believe that the input to our project is of the same or
even better quality than the gravitational gradients commonly used for global gravitational
modelling.

However, to apply these data in geophysics, we have decided to change their datum. In
a first step, the data were rotated from GRF into a more commonly used spherical LNOF.
In this tangential frame the interpretation of radial and other components is more straight-
forward. For the tensor rotation an a-priori model was used in order to prevent the error
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leakage from the two less-accurate components (Txy and Tyz) that GOCE delivers. In the
second step, we downward continued these rotated gradients to geocentric spheres of a
constant radius. This also helps to interpret the potential data as they do not suffer from
height effects since they refer to a constant height; however, an a priori model has to be used
again. These two steps with an a priori model affect the data, but not significantly. The
effects from rotation are well known from recent articles on GOCE topics, while the effects
from the continuation are shown in Chapter 2 of the Final Report. At maximum, they reach
0.1 mE with the RMS values at 0.01 mE level for the GOCE mean altitude (the value before
its lowering at the end of 2012).

Global data on the mean sphere were gridded in the next step. Practically, on the one
hand, it is more convenient to work with regular grids than with data along the orbit if
the geophysical analyzes are based on the forward modelling (i.e., an iterative approach
with varying input parameters). Using the measured time series of GOCE data (between
November 2009 and June 2012) directly would mean to deal with around 68 million data
points containing the tensor components. Gridded data reduce this amount to a much better
manageable extent. On the other hand, gridding usually smoothes the signal. To circumvent
smoothing as much as possible, the smoothing parameter was turned off in the interpolation
and the final resolution was set to 10 arc-min which is far beyond the resolution of recent
GRACE/GOCE models.

It is difficult to assess in a direct way, if either using our grids or recent GRACE/GOCE
global gravitational models produces better results. The best method of getting the answer
is to apply both, grids and the models, to various geophysical phenomena and then to make
a decision based on independent models and data. However, it was shown in Chapter 3
of Final Report that the differences in gravitational gradients computed from some existing
global models are rather low at satellite altitudes. But this does not hold for lower altitudes
(closer to the Earth’s surface) where differences might reach up to 1 E depending on the
component and the maximum degree. Thus, one has to consider these differences when
using any GRACE/GOCE global gravitational model near the Earth. In addition, a choice
of the maximum degree for GRACE/GOCE models is especially important and as such is
still an open question within the geodetic community. The harmonic expansions are usually
computed to a higher degree than physically reasonable. By such an overestimation, error
leakage into lower frequencies (coefficients) when applying a harmonic analysis can be pre-
vented mostly. In direct consequence, a user must decide until which degree/order it is still
meaningful to use this expansion. In addition, due to polar gaps the GOCE models must be
constrained (or regularized), which affects the coefficients. In principle, all these aspects can
be avoided using gridded data. The evident drawback of grids is that they must be used
together to compensate a lack of the signal. GRACE/GOCE models are usually based on
three or four high-accurate components and their direct comparison with grids can suffer
from that. This lack of the signal over certain frequencies was shown in Chapter 3 of Final
Report.

In order to demonstrate that grids might be more relevant for geophysical research than
recent state-of-the-art models, we simply correlate the grids of gravitational gradients and
the data from these models with independent topography/bathymetry corrections com-
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puted form a recent topography/bathymetry model (here KIT). In Figures 8.7 to 8.10 in
the top left panel we display the grid values, in the top right panel the values from KIT, in
the following lines we have data computed at the same altitude as for the top panels but
from a selected model up to degree 180 and its maximum degree, respectively. A gain in
correlation is indicated in the title of the lower panels, whereas the positive sign means that
the grid better correlates with KIT than the selected model. However, this correlation anal-
ysis should be taken as an indication rather than an evidence and more analyzes with other
geophysical models should follow. This gain in correlation does not have to be positive in
all areas and it has to be noted that such a comparison rises and falls with quality of the
independent geophysical model used. All in all, the high-resolution GRACE/GOCE grids
of four high-accurate components in LNOF and at three reference heights are provided for
geophysical research.

8.4 Improvements of geophysical understanding through GOCE

8.4.1 Reykjanes Ridge

To answer the question whether our understanding has been improved, the RMS was cal-
culated with regard to a GOCE model and with respect to EGM2008 (Figure 8.4). The best
fitting values for α and κ are different for GOCO03S and EGM2008. This could indicate that
more information which is relevant for the model is contained in the GOCO03s model than
in EGM2008.

However, a plot of the gravity gradients shows that the difference between both global
gravitational models is in the low degrees (Figure 8.11). It arises because of the cut-off de-
gree 20 which is applied to GOCO03S and to the model, but which could not be applied to
EGM2008. Instead a mean was removed over the data shown in the figure. Therefore the
difference in RMS likely does not indicate an improvement from GOCO03S with respect to
EGM2008.

GOCE offers improvement in the degrees above 120. As the geophysical signal at the MOS

(250 km) is not sensitive to degrees beyond 150, the improvement from EGM2008 to GOCE
gradients is difficult to show at MOS. Therefore a comparison is made at 100 km, see Figure
8.13. The best fitting parameters are the same for both data sets and the differences in misfit
are small. Therefore improvements can not be shown with the selected free parameters in
the geophysical model.

Results from the geophysical model show that gravitational gradients can be used and
different components of the gradient tensor provide different constraints. Whether the re-
sults are valid only for the Reykjanes Ridge depends on whether the geophysical model is
applicable in other areas, therefore this question is answered first.

The forward modelling method to compute gravitational gradients for an arbitrary den-
sity distribution using spherical harmonics (Final Report, Section 5.1) is very suitable for
comparison with gridded gradients at constant altitude and with global gravitational mod-
els. Because the model is global and spherical, it has the advantage that there are no ’flat-
Earth effects’ and band-pass filtering in the spectral domain can easily be applied to the
model. The trade-off is that resolution is worse than regional models, to be able to keep com-
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Figure 8.7: Gain in correlation in Txx at MOS-250 km. Top left: grid values, top right: KIT
values, 2nd line: GOCO03s, 3rd line: TIM r4, bottom line: DIR r4.
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Figure 8.8: Gain in correlation in Txz at MOS-250 km. Top left: grid values, top right: KIT
values, 2nd line: GOCO03s, 3rd line: TIM r4, bottom line: DIR r4.
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Figure 8.9: Gain in correlation in Tyy at MOS-250 km. Top left: grid values, top right: KIT
values, 2nd line: GOCO03s, 3rd line: TIM r4, bottom line: DIR r4.
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Figure 8.10: Gain in correlation in Tzz at MOS-250 km. Top left: grid values, top right: KIT
values, 2nd line: GOCO03s, 3rd line: TIM r4, bottom line: DIR r4.
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Figure 8.11: RMS between modeled gravity disturbance from GOCO03S and EGM2008 at
MOS for different values of the thermal expansion coefficient α and thermal diffusivity κ.
Maximum spherical harmonics degree is 150.

Figure 8.12: Gravity disturbance for EGM2008, GOCO03S and the model at MOS. The max-
imum degree is 250, model parameters are the same as Figure 8.11.
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Figure 8.13: RMS between modeled gravity gradient Tzz from EIGEN-GL04C and GOCO03S
at 100 km altitude for different values of the thermal expansion coefficient α and thermal
diffusivity κ. The maximum spherical harmonic degree is 250.
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putation time manageable and spherical harmonic transforms accurate (though improve-
ments can be made in both aspects using available algorithms).

In the Reykjanes Ridge the signal from the ridge is the dominant feature in the gravi-
tational field. Density values in the geophysical model were derived from a plate-cooling
model. The ridge extends far north and south so that a 2-D density distribution (varying
only in a direction across the ridge) can be inserted in the 3-D model, extending the ridge
far north and south to be away from edge effects. The geophysical model for the Reykjanes
Ridge could well be applied to another mid-ocean ridge provided that the plate-cooling
method is a good first-order description of the plate thickness and that the ridge is uninter-
rupted by transform faults. Straight-forward modifications in parameters such a spreading
rate are required. Ridges in the Atlantic and Indian Ocean appear to fulfil these require-
ments.

The correlation between gridded gradients and topography was searched in a certain
bandwidth (e.g. between the spherical harmonic degree 100 and 150). This finding is very
dependent on the variance of the signal as a function of degree and as a consequence it
might not be transferable to other regions without prior adaption of the models.

8.4.2 Congo Basin

One aim of the study was to assess whether the latest GOCE gravitational models can im-
prove our knowledge on the density stratification of the sedimentary rocks that form the
Congo Basin. As opposed to case study area A (Reykjanes Ridge) it should be emphasized
that in situ gravitational data is sparse and noisy. Thus, the Congo Basin is poorly repre-
sented in pre-GOCE models as EGM2008.

We digitize the regional sedimentary map published by Kadima, Ntabwoba and Lucazeau
(2011) and modify it in such a way that a refined spatial shape of sedimentary rocks results
in a gravitational field that closely resembles the GOCO03S gravitational data over the basin.
We believe that it is a legitimate step since (i) the Congo basin is the least studied continental
sedimentary basin in the world, and (ii) the refined sedimentary map only slightly modifies
the Kadima, Ntabwoba and Lucazeau (2011) findings, such that the changes to the original
sedimentary map are not larger than 100 km in the horizontal direction.

The original sediment thickness map is compared with the transformed sediment thick-
ness map in Figure 8.14. The sediment thickness map is mostly distorted in the north-west
part while the southernmost part is slightly shifted southwards. The transformed sediment
thickness map can be viewed as a refined model of the southeastern part of the Congo basin
in the sense that the induced gravitational functionals gr and Vrr by sedimentary rocks re-
semble closely to the GOCO03S-derived gravity functionals.

In conclusion, it is believed that over the Congo Basin our geophysical understanding
improved due to GOCE. However, a positive proof is missing.
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Figure 8.14: Left panel: Thickness of sedimentary rocks of the southeastern part of the Congo
Basin by Kadima, Ntabwoba and Lucazeau (2011) represented by spherical harmonic series
up to degree and order 220. The contour line of 500 m topographic height (blue line) shows
the margin of the whole Congo Basin. Right panel: The sediment thickness map of the
southeastern part of the Congo Basin after applying the Helmert transformation with pa-
rameters ~p = {0.873◦,−4.59◦, 0.949, 0.760, −13.7◦} (cf. Final Report, Eq. 7.48). For an easier
analysis of the effect of the Helmert transformation, the contour lines of 4, 5, 6 and 8 km

basin thickness are plotted in thin black lines (before the transformation) and in thick red
lines (after the transformation), respectively.
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Figure 8.15: RMS between modelled Tzz gradients and downward continued gradients (left)
and between modelled gradients and gradients computed from GOCO03S (right), both at
MOS.

8.5 Information content of in-orbit gradients vs. gridded gradients
vs. global models

One of the tasks was to ascertain if in-orbit gravitational gradients (measured plus aug-
mented in the lower bandwidth) contain more information than already captured by the
GOCE-only spherical harmonic models, and – if that is valid – to demonstrate that such
surplus information is meaningful for geophysics.

For case study area A figure 8.15 shows misfit plots for the in-orbit gravitational gradients
and the GOCO03S global model for the Tzz component. The plot shows a similar behaviour
pattern, but different best fit estimates for α and κ are found. Slightly smaller RMS values
are obtained for the in-orbit gradients, which is encouraging. Figure 8.16 shows the same
plot but for the Txx components. In conclusions, there is a difference in RMS but it is not
possible yet to claim it is a significant improvement.

Looking at the observations directly (Txx component in Figure 8.16 and Tyy and Txz com-
ponent in Figure 8.17) shows that the long-wavelength signal of the in-orbit gradients and
the GOCO03S model are similar. The gradients display a small wavelength signal. From the
current resolution of the model, it is not possible to conclude if this correlates with geophys-
ical features. The deviation between the model and the gradients seems to be larger for the
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Figure 8.16: RMS between modelled Txx gradients and downward continued gradients (left)
and between modelled gradients and gradients computed from GOCO03S (right), both at
MOS.
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Figure 8.17: Txx component of the GOCO03S global gravitational model at MOS.

Figure 8.18: Tyy and Txz components of the GOCO03S global gravitational model at MOS.

Txz component.

However, it is more practical to deal with gridded gravitational gradients. As also laid out
in Section 8.3, gridded gravitational gradients contain more high-frequency variations than
a global gravitational model. It was found that grids from combined GOCE and GRACE
gradient data show better correlation with topography in the area of the Reykjanes Ridge
than the global gravitational model GOCO03S. Thus, gridded gradients seem to have more
detailed information that is also more accurate.

Gridded gravitational gradients are useful if the highest resolution is desirable. However,
topography is usually removed from gravitational observations because the research inter-
est is in crustal parameters. It remains to ascertain if the higher resolution of the gridded
gradients is useful in improving estimates of crustal structure.
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8.6 Gravity gradients at satellite altitude vs. downward continued
ones

When interpreting the GOCE gravitational gradients in terms of the solid Earth’s struc-
ture, two different views on the height where the GOCE gravitational gradients are ad-
justed by modelled quantities have been considered. For the identification of geological
units in unexplored parts of the world, such as the central part of Africa, it is useful to
continue the GOCE gravitational gradients from the satellite altitude down to (or close to)
the Earth’s surface, since the downward continuation amplifies the gradiometric signal and
better reflects the near-surface geological structure. This view has been adopted for refin-
ing the sedimentary rock structure over the Congo Basin by Martinec (2013). However,
the downward continuation also enhances the signal induced by the topographic masses
and increases the sensitivity of the results to uncertainty in topographic-mass density esti-
mates. The standard value of 2670 kg/m3 for topographic-mass density may introduce an
undesired error to downward-continued gravitational gradients, for instance, in areas of el-
evated, low-density sediments (e.g., the Congo Basin). In addition, downward continuation
amplifies not only the signal, but also the noise and omission error (in general, the omis-
sion error is the signal that has not been modelled, Losch et al., 2002). At satellite altitudes,
the high-frequency noise and omission error are dampened, but continuing them down-
ward (close) to the Earth’s surface, they are amplified by significantly more than signal is.
Hence, if the downward continuation of GOCE data is not constrained by additional data
with short-wavelength content, or if the omission error of the downward-continued signal
is not filtered out, the GOCE data are interpreted at the satellite altitude, or a mean satellite
altitude. This view has been adopted for lithospheric or upper-mantle modelling (Fullea
et al., 2013; Bouman et al., 2013).

Complementary to Figure 8.6, Figure 8.19 shows the isotropic kernels for t = 0.99221,
which corresponds to the computation-point height of 50 km. The graphs of the full-spectrum
isotropic kernels (solid lines) can be described in a similar way as those in Figure 8.6 for a
computational point at 255 km height. However, the functions decrease faster with increas-
ing angular distance ψ than those in Figure 8.6, which is a well-known fact from potential
field theory. Quantitatively, Krr, KrΩ and KΩΩ have amplitudes less than 1 % of their maxi-
mum amplitudes at distances ψ > 0.6, ψ > 1.5 and ψ > 2.5 arc-deg, respectively. Moreover,
the amplitudes of the isotropic kernels for a computational point at 50 km height are sig-
nificantly larger than those for a computational point at 255 km height, meaning that the
gravitational gradient signals are amplified by the continuation from the satellite altitude
towards the Earth’s surface.

What differs substantially are the graphs of the truncated isotropic kernels. Whereas at
the computational height of 255 km the full-spectrum and truncated isotropic kernels are
coincident within an omission error not larger than 0.9 % of the maximum amplitudes, at
the computation height of 50 km, the full-spectrum and truncated kernels differ significantly.
An advantage of the vertical-vertical Krr kernel with respect to the KrΩ and KΩΩ kernels
is that both the full-spectrum and truncated Krr have maximum at ψ = 0 arc-deg, but
the maximum value is reduced by 4 times when the kernel Krr is truncated at the degree
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jmax = 220. The difference between the full-spectrum and truncated Krr kernels therefore
gives the omission error of the truncated Krr. We can see that the omission error has an
amplitude comparable to that of the full-spectrum Krr.

Similarly toKrr, the kernelsKrΩ andKΩΩ are reduced in amplitudes when omitting their
short-wavelength part, but in contrast to Krr, the positions of the maximum amplitudes
(denoted by inverted triangles) are shifted towards larger distances ψ from the observer.
Shifting the maximum values of truncated KrΩ and KΩΩ kernels means that the sensitivity
of ΓrΩ and ΓΩΩ gravitational gradients is transferred to the density structure at locations
different from those for the original, full-spectrum isotropic kernels. The difference between
the full-spectrum and truncated KrΩ and KΩΩ gives the omission error of the truncated ker-
nels. We can therefore see that downward continuation significantly amplifies this omission
error.

For the identification of geological units in unexplored parts of the world, it is advanta-
geous to continue the GOCE gravitational gradients from the satellite altitude downward to
(or close to) the Earth’s surface since the downward continuation amplifies the gravitational
gradient signals and better reflects the near-surface geological structure. Since the omission
error is also significantly amplified by the downward continuation, the forward geophys-
ical modelling must ensure that the omission error of the forward-modelled gravitational
gradients is the same as the omission error of the downward-continued GOCE observa-
tions. Only after this is the downward-continued GOCE observations able to be interpreted
in terms of geological structure. One way of performing this step is to pass the forward-
modelled gravitational gradients through the bandpass filter with the same bandwidth as
the GOCE gravitational gradients (e.g., Martinec, 1991). This approach has been applied by
Martinec (2013) when interpreting the downward-continued GOCO03S gravitational model
to refine a model of sedimentary rock cover in the southeastern part of the Congo Basin.
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Figure 8.19: The same as Figure 8.6, but for the computation-point height of 50 km. The
truncated isotropic kernelsKrr,KrΩ andKΩΩ are now plotted by red, green and blue dashed
lines, respectively. The inverted triangles denote the maximum amplitudes of the kernels
KrΩ and KΩΩ.



192 8 Impact assessment report



References
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Braitenberg, C., Mariani, P., Ebbing, J. and Šprlák, M. (2011), ‘The enigmatic chad lineament
revisited with global gravity and gravity-gradient fields (in the formation and evolution of
africa; a synopsis of 3.8 ga of earth history)’, Geological Society Special Publications 357, 329–
341.

Buiter, S., Steinberger, B., Medvedev, S. and Tetreault, J. (2012), ‘Could the mantle have
caused subsidence of the congo basin?’, Tectonophysics 514–517(0), 62 – 80.
URL: http://www.sciencedirect.com/science/article/pii/S0040195111004021

Cooper, G. (2002), ‘An improved algorithm for the euler deconvolution of potential field
data’, The Leading Edge 21(12), 1197–1198.

Crosby, A. G., Fishwick, S. and White, N. (2010), ‘Structure and evolution of the intracratonic
congo basin’, Geochemistry, Geophysics, Geosystems 11(6).
URL: http://dx.doi.org/10.1029/2009GC003014

Cunningham, L. E. (1970), ‘On the computation of the spherical harmonic terms needed
during the numerical integration of the orbital motion of an artificial satellite’, Celestial
Mechanics 2, 207–216.

Daly, M. C., Lawrence, S. R., Diemu-Tshiband, K. and Matouana, B. (1992), ‘Tectonic evolu-
tion of the cuvette centrale, zaire’, Journal of the Geological Society 149(4), 539.

Delorey, A. A., Dunn, R. A. and Gaherty, J. B. (2007), ‘Surface wave tomography of the up-
per mantle beneath the Reykjanes Ridge with implications for ridge-hot spot interaction’,
Journal of Geophysical Research (Solid Earth) 112, 8313.



195

D’Errico, J. R. (2006), ‘Understanding Gridfit’, Information available at: .
URL: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do

Doucoure, C. M. and Patriat, P. (1992), ‘Thermal diffusivity of the lithosphere derived from
altimetry and bathymetry profiles across the Southwest Indian Ridge’, Geophysical Re-
search Letters 19, 1543–1546.

Downey, N. J. and Gurnis, M. (2009), ‘Instantaneous dynamics of the cratonic congo basin’,
Journal of Geophysical Research: Solid Earth 114(B6), 1–29.
URL: http://dx.doi.org/10.1029/2008JB006066

Durrheim, R. and Cooper, G. (1998), ‘Euldep: a program for the euler deconvolution of
magnetic and gravity data’, Computers & Geosciences 24(6), 545–550.

Ekholm, S. (1996), ‘A full coverage, high-resolution, topographic model of greenland com-
puted from a variety of digital elevation data’, Journal of Geophysical Research: Solid Earth
101(B10), 21961–21972.
URL: http://dx.doi.org/10.1029/96JB01912

ESA (1999), Gravity field and steady-state ocean circulation, Technical report, Reports for
Mission Selection - The Four Candidate Earth Explorer Core Missions, European Space
Agency.

Eshagh, M. (2011), ‘The effect of spatial truncation error on integral inversion of satellite
gravity gradiometry data’, Advances in Space Research 47(7), 1238–1247.
URL: http://www.sciencedirect.com/science/article/pii/S0273117710007660

Fedi, M. and Florio, G. (2002), ‘A stable downward continuation by using the ISVD method’,
Geophysical Journal International 151(1), 146–156.
URL: http://dx.doi.org/10.1046/j.1365-246X.2002.01767.x

Fishwick, S. (2010), ‘Surface wave tomography: Imaging of the lithosphere – asthenosphere
boundary beneath central and southern africa?’, Lithos 120(1), 63–73.

Fishwick, S. and Bastow, I. (2011), ‘Towards a better understanding of african topography:
A review of passive-source seismic studies of the african crust and upper mantle, in out
of africa: a synopsis of 3.8 ga of earth history, eds. van hinsbergen, d.j.j., buiter, s., torsvik,
t.h., gaina, c. and webb, s’, Geological Society Lond. Spec. Pub. 357, 343–371. Publisher:
Geological Society of London, Special Publications.

Fitzgerald, D., Reid, A. and McInerney, P. (2004), ‘New discrimination techniques for euler
deconvolution’, Computers & Geosciences 30(1), 461–469.
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A Appendix

A.1 Hotine’s harmonics and normalization factors

For the reader’s sake, we list the relations between Hotine’s harmonics for the second Carte-
sian derivatives and the ordinary geopotential coefficients. The original Hotine’s equations
in Hotine (1969) are non-normalized and the similar functions in Cunningham (1970); Bet-
tadpur (1995); Petrovskaya and Vershkov (2009, 2012) use a different convention. Here we
use notation according to Sebera et al. (2013).
Vxx:C̄xxn+2,0 = −1

2 t0C̄n,0 + 1
4 t+2C̄n,2 ,

S̄xxn+2,0 = 0 ,C̄xxn+2,1 = −3
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4 t+2C̄n,3 ,

S̄xxn+2,1 = −1
4 t0S̄n,1 + 1

4 t+2S̄n,3 ,C̄xxn+2,2 = 1
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Vzz : C̄zzn+2,0 = t0C̄n,0 ,
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2 t−1C̄n,m−1 + 1

2 t+1C̄n,m+1 .

Normalized Hotine’s factors for the acceleration vector read (use of v implicates they refer
to a vector):

v0 =

√
(2n+ 1)(n+m+ 1)(n−m+ 1)

2n+ 3
,

v−1 = a

√
(2n+ 1)(n+m+ 1)(n+m)

2n+ 3
,

with a =
1√
2

for m = 1, a = 1 otherwise ,

v+1 = a

√
(2n+ 1)(n−m+ 1)(n−m)

2n+ 3
,

with a =
√
2 for m = 0, a = 1 otherwise ,

and similarly for the components of the Eötvös tensor (use of t implicates they refer to a
tensor):

t0 =

√
(2n+ 1)(n+m+ 2)(n+m+ 1)(n−m+ 2)(n−m+ 1)

2n+ 5
,

t−1 = a

√
(2n+ 1)(n+m+ 2)(n+m+ 1)(n+m)(n−m+ 2)

2n+ 5
,

with a =
1√
2

for m = 1, a = 1 otherwise ,

t+1 = a

√
(2n+ 1)(n+m+ 2)(n−m+ 1)(n−m)(n−m+ 2)

2n+ 5
,

with a =
√
2 for m = 0, a = 1 otherwise ,

t+2 = a

√
(2n+ 1)(n+m+ 2)(n+m+ 1)(n+m)(n−m+ 2)

2n+ 5
,

with a =
√
2 for m = 0, a = 1 otherwise ,

t−2 = a

√
(2n+ 1)(n+m+ 2)(n+m+ 1)(n+m)(n−m− 1)

2n+ 5
,

with a =
√
2 for m = 2, a = 1 otherwise .



IV A Appendix

A.2 Nominal accuracy of DC to MOS

Table A.1: Statistics for the nominal accuracy of DC from the real orbit to MOS in 2009, 2010, 2011 and 2012 (RMS/Max), Vij
in mE.

Epoch Vxx Vxy Vxz Vyy Vyz Vzz Dimension
20091101-20091130 0.022/0.130 0.003/0.070 0.007/0.134 0.022/0.144 0.007/0.138 0.043/0.238 2572892
20091201-20091231 0.004/0.068 0.001/0.041 0.001/0.085 0.004/0.037 0.001/0.053 0.008/0.103 2678400

20100101-20100111 0.004/0.037 0.001/0.023 0.001/0.036 0.004/0.034 0.001/0.041 0.007/0.056 880727
20100112-20100131 0.018/0.122 0.003/0.076 0.006/0.151 0.018/0.125 0.006/0.122 0.035/0.200 1684614
20100201-20100212 0.025/0.123 0.004/0.063 0.008/0.123 0.025/0.134 0.008/0.134 0.050/0.208 974919
20100303-20100304 0.007/0.045 0.001/0.019 0.002/0.045 0.007/0.040 0.002/0.040 0.013/0.066 105494
20100306-20100319 0.002/0.036 0.000/0.018 0.001/0.037 0.002/0.025 0.001/0.033 0.005/0.046 1209597
20100322-20100323 0.001/0.004 0.000/0.002 0.000/0.003 0.001/0.005 0.000/0.003 0.002/0.008 172800
20100325-20100331 0.001/0.009 0.000/0.006 0.000/0.009 0.001/0.009 0.000/0.012 0.002/0.015 604800
20100401-20100430 0.011/0.095 0.002/0.049 0.004/0.098 0.011/0.094 0.004/0.096 0.022/0.152 2592000
20100501-20100506 0.021/0.100 0.003/0.043 0.007/0.089 0.021/0.116 0.006/0.087 0.041/0.191 445405
20100507-20100531 0.014/0.100 0.002/0.047 0.005/0.091 0.015/0.115 0.005/0.094 0.029/0.188 2119936
20100601-20100630 0.002/0.034 0.000/0.021 0.001/0.042 0.002/0.022 0.001/0.027 0.004/0.052 2578886
20100927-20100930 0.004/0.028 0.001/0.011 0.001/0.028 0.004/0.024 0.001/0.021 0.008/0.039 290842
20101001-20101004 0.006/0.039 0.001/0.015 0.002/0.038 0.006/0.035 0.002/0.022 0.011/0.055 339023
20101006-20101031 0.011/0.068 0.002/0.031 0.004/0.060 0.011/0.077 0.004/0.062 0.022/0.126 2226323
20101101-20101130 0.008/0.063 0.001/0.030 0.003/0.056 0.008/0.073 0.003/0.057 0.016/0.122 2592000
20101201-20101207 0.002/0.014 0.000/0.006 0.001/0.012 0.002/0.014 0.001/0.014 0.005/0.024 527632
20101208-20101231 0.003/0.031 0.001/0.018 0.001/0.034 0.003/0.029 0.001/0.032 0.007/0.048 2043094

20110119-20110127 0.012/0.056 0.002/0.029 0.004/0.051 0.012/0.068 0.004/0.058 0.024/0.114 651433
20110128-20110131 0.012/0.056 0.002/0.029 0.004/0.047 0.012/0.066 0.004/0.064 0.024/0.107 312488
20110201-20110207 0.012/0.061 0.002/0.032 0.004/0.062 0.012/0.067 0.004/0.062 0.024/0.105 604798
20110211-20110228 0.006/0.048 0.001/0.025 0.002/0.048 0.006/0.050 0.002/0.040 0.012/0.083 1555200
20110301-20110331 0.003/0.032 0.000/0.014 0.001/0.032 0.003/0.028 0.001/0.024 0.006/0.045 2678400
20110401-20110404 0.006/0.039 0.001/0.015 0.002/0.039 0.006/0.034 0.002/0.024 0.013/0.061 275062
20110405-20110430 0.012/0.067 0.002/0.030 0.004/0.059 0.012/0.076 0.004/0.061 0.023/0.121 2203881
20110501-20110531 0.008/0.063 0.001/0.029 0.002/0.057 0.008/0.072 0.002/0.055 0.015/0.119 2678400
20110601-20110607 0.002/0.011 0.000/0.005 0.001/0.009 0.002/0.013 0.001/0.012 0.004/0.020 533681
20110609-20110630 0.004/0.034 0.001/0.020 0.001/0.042 0.004/0.035 0.001/0.033 0.008/0.060 1900800
20110701-20110729 0.011/0.064 0.002/0.031 0.004/0.058 0.011/0.076 0.004/0.064 0.022/0.127 2496245
20110730-20110731 0.011/0.052 0.002/0.027 0.003/0.048 0.011/0.064 0.004/0.058 0.022/0.100 155237
20110801-20110823 0.008/0.055 0.001/0.031 0.003/0.056 0.008/0.059 0.003/0.061 0.016/0.095 1917478
20110824-20110831 0.003/0.016 0.000/0.009 0.001/0.016 0.003/0.018 0.001/0.020 0.005/0.029 647865
20110901-20110923 0.003/0.026 0.000/0.013 0.001/0.026 0.003/0.030 0.001/0.027 0.006/0.047 1973981
20110928-20110930 0.007/0.044 0.001/0.018 0.002/0.044 0.007/0.039 0.002/0.035 0.014/0.060 259200
20111001-20111025 0.011/0.057 0.002/0.032 0.004/0.064 0.011/0.068 0.004/0.064 0.023/0.112 2084555
20111026-20111031 0.012/0.064 0.002/0.032 0.004/0.063 0.012/0.071 0.004/0.064 0.024/0.110 480788
20111101-20111130 0.006/0.055 0.001/0.026 0.002/0.054 0.006/0.060 0.002/0.049 0.011/0.100 2592000
20111201-20111231 0.005/0.045 0.001/0.026 0.002/0.054 0.005/0.049 0.002/0.047 0.010/0.082 2678400

20120101-20120117 0.011/0.065 0.002/0.029 0.004/0.056 0.011/0.074 0.004/0.057 0.023/0.120 1392867
20120118-20120131 0.011/0.067 0.002/0.030 0.004/0.059 0.011/0.076 0.003/0.059 0.022/0.123 1172476
20120201-20120229 0.005/0.048 0.001/0.026 0.002/0.046 0.005/0.050 0.002/0.053 0.010/0.080 2505600
20120301-20120305 0.002/0.011 0.000/0.005 0.001/0.009 0.002/0.012 0.001/0.010 0.004/0.021 359640
20120309-20120315 0.003/0.022 0.001/0.008 0.001/0.021 0.003/0.020 0.001/0.016 0.006/0.034 473737
20120316-20120331 0.007/0.053 0.001/0.025 0.002/0.054 0.007/0.052 0.002/0.048 0.014/0.080 1339021
20120401-20120430 0.012/0.063 0.002/0.032 0.004/0.061 0.012/0.076 0.004/0.066 0.024/0.126 2592000
20120501-20120522 0.005/0.051 0.001/0.023 0.002/0.051 0.005/0.049 0.002/0.039 0.010/0.082 1824059
20120523-20120531 0.002/0.011 0.000/0.005 0.001/0.009 0.002/0.013 0.001/0.010 0.003/0.021 741285
20120601-20120606 0.002/0.014 0.000/0.008 0.001/0.014 0.002/0.018 0.001/0.013 0.005/0.029 518400
20120614-20120616 0.004/0.031 0.001/0.016 0.001/0.030 0.004/0.020 0.001/0.029 0.008/0.041 251202
20120617-20120618 0.005/0.037 0.001/0.013 0.002/0.038 0.005/0.029 0.002/0.029 0.010/0.048 153880



A.3 Original and data at MOS versus TIM-r3 V

A.3 Original and data at MOS versus TIM-r3

Table A.2: Differences in maximal values of consistency of GOCE data and TIM-r3 (up to 250) according to Eq. (2.11), in mE.

Epoch Vxx Vxy Vxz Vyy Vyz Vzz

20091101-20091130 0.00516 0.00225 0.00733 0.05806 0.00554 0.03785
20091201-20091231 0.00072 0.00084 0.00000 0.00168 0.00001 0.00322

20100101-20100111 0.00000 0.00000 0.00001 0.00858 0.00017 0.00059
20100112-20100131 0.00235 0.00486 0.00000 0.04718 0.00386 0.02832
20100201-20100212 0.00285 0.00433 0.00022 0.02557 0.00245 0.05046
20100303-20100304 0.00885 0.00062 0.00020 0.00569 0.00107 0.00000
20100306-20100319 0.00005 0.00009 0.00001 0.00127 0.00015 0.00007
20100322-20100323 0.00015 0.00067 0.00001 0.00253 0.00042 0.00064
20100325-20100331 0.00068 0.00001 0.00000 0.00005 0.00016 0.00129
20100401-20100430 0.00977 0.00046 0.00003 0.00075 0.00042 0.02243
20100501-20100506 0.01120 0.00399 0.00205 0.05245 0.00601 0.04667
20100507-20100531 0.00103 0.00281 0.00012 0.01572 0.00422 0.07081
20100601-20100630 0.00003 0.00043 0.00001 0.00026 0.00116 0.00000
20100927-20100930 0.00041 0.00065 0.00020 0.00570 0.00002 0.00001
20101001-20101004 0.01368 0.00045 0.00201 0.01500 0.00234 0.02864
20101006-20101031 0.00000 0.00001 0.00000 0.00574 0.00465 0.04166
20101101-20101130 0.00158 0.00001 0.00023 0.00157 0.00028 0.01298
20101201-20101207 0.00000 0.00010 0.00004 0.00000 0.00021 0.00192
20101208-20101231 0.00032 0.00012 0.00003 0.00001 0.00011 0.00695

20110119-20110127 0.01327 0.00159 0.00000 0.01515 0.01502 0.02051
20110128-20110131 0.01700 0.00228 0.00027 0.01653 0.00010 0.03305
20110201-20110207 0.00436 0.00424 0.00055 0.01450 0.00476 0.01123
20110211-20110228 0.00375 0.00023 0.00012 0.01415 0.00175 0.01370
20110301-20110331 0.00084 0.00082 0.00051 0.00495 0.00185 0.00000
20110401-20110404 0.00002 0.00214 0.00001 0.00569 0.00886 0.00003
20110405-20110430 0.01927 0.00270 0.00003 0.00069 0.00065 0.00152
20110501-20110531 0.00000 0.00000 0.00000 0.00002 0.00000 0.00000
20110601-20110607 0.00588 0.00027 0.00034 0.00440 0.00017 0.01019
20110609-20110630 0.01548 0.00423 0.00147 0.00835 0.01151 0.02130
20110701-20110729 0.00222 0.00159 0.00028 0.01577 0.00025 0.00542
20110730-20110731 0.00582 0.00763 0.00000 0.00167 0.00112 0.01965
20110801-20110823 0.03254 0.00112 0.00004 0.01254 0.00059 0.00423
20110824-20110831 0.00573 0.00061 0.00048 0.00149 0.00017 0.01448
20110901-20110923 0.00098 0.00031 0.00000 0.00097 0.00026 0.00000
20110928-20110930 0.01508 0.00028 0.00061 0.01931 0.00019 0.03370
20111001-20111025 0.02465 0.00004 0.00004 0.00132 0.00254 0.00254
20111026-20111031 0.00462 0.00496 0.00106 0.02864 0.01099 0.00868
20111101-20111130 0.01488 0.00083 0.00104 0.01089 0.00112 0.02425
20111201-20111231 0.00006 0.00015 0.00004 0.00956 0.00027 0.00024

20120101-20120117 0.00654 0.00233 0.00048 0.02094 0.00065 0.02023
20120118-20120131 0.02217 0.00275 0.00015 0.02600 0.00324 0.04452
20120201-20120229 0.00312 0.00013 0.00061 0.00094 0.00005 0.00821
20120301-20120305 0.00488 0.00153 0.00037 0.00106 0.00031 0.00047
20120309-20120315 0.00211 0.00010 0.00035 0.00695 0.00169 0.00036
20120316-20120331 0.01260 0.00029 0.00066 0.00510 0.00559 0.01008
20120401-20120430 0.00005 0.00000 0.00007 0.00007 0.00001 0.00015
20120501-20120522 0.00646 0.00121 0.00076 0.00650 0.00267 0.00177
20120523-20120531 0.00453 0.00023 0.00002 0.00259 0.00011 0.00883
20120601-20120606 0.00863 0.00025 0.00030 0.00044 0.00088 0.00285
20120614-20120616 0.00930 0.00146 0.00002 0.00878 0.00184 0.00228
20120617-20120618 0.00118 0.00016 0.00122 0.00409 0.00321 0.00638
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A.4 Linear spectral density before and after UDC to MOS

The LSD of Vij before and after the continuation to MOS are provided. Note that all outliers
are present in the computations. This is allowed for a relative comparison as is the case
(correlation analysis).

2009/12/01 - 2009/12/31

2010/01/01 - 2010/01/11
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2010/01/12 - 2010/01/31

2010/02/01 - 2010/02/12

2010/03/03 - 2010/03/04
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A.5 Topographic gradient effects – Vzz

Figure A.1: Topographic gradient V top
zz from KIT for n ∈ [0, 1800] (E).



A.5 Topographic gradient effects – Vzz IX

Figure A.2: Topographic gradient V top
zz from

KIT n ∈ [0, 8], [0, 12], [0, 20] (from top to bot-
tom) (E).

Figure A.3: KIT topographic gradient V top
zz

n ∈ [9, 1800], [13, 1800], [21, 1800] (from top
to bottom) (E).


