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Introduction Insight into downward/upward continuation

Insight into upward/downward continuation

Why?

“The main advantage of enhancing potential field by downward
continuation with respect to other derivative-based techniques is
that the physical dimensions of the transformed field are the same as
in the original data” (Fedi and Florio 2002).

But!

“Continuing downward, the functions become rougher. The
transition from the flight level to the level of the Earth causes an
amplification of the high-frequencies” (Hofmann-Wellenhof and
Moritz 1986).

⇒ Upward cont. - acts as a low pass filter

⇒ Downward cont. - vice versa: usually strong error amplification
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Introduction Basic tools

Basic options for continuation of potential data

• Gradient method - the function is developed into a Taylor series and

continued via f = f(0) + f ′

1! dx+ f ′′

2! dx
2 + ...

+ Very simple, flexible and very fast
– The derivatives f ′, f ′′, ... must be known
– Usually applicable for small differentials (dx)

• Poisson integral - standard tool for continuation of potential data

+ Rigorous (solution of the Dirichlet problem) and quite flexible (curve,
plane, sphere, ellipsoid)

+ Plane - fast, solvable via FFT
– Curve, Sphere, Ellipsoid - integral equation must be solved

• Other methods - global basis functions (sph. harmonics, ...), local
(wavelets, ...), collocation, combined strategies (google for more)

Novák et al. (UWB) Downward continuation 9 - 12 October, 2012 4 / 17



Introduction Basic tools

Basic options for continuation of potential data

• Gradient method - the function is developed into a Taylor series and

continued via f = f(0) + f ′

1! dx+ f ′′

2! dx
2 + ...

+ Very simple, flexible and very fast
– The derivatives f ′, f ′′, ... must be known
– Usually applicable for small differentials (dx)

• Poisson integral - standard tool for continuation of potential data

+ Rigorous (solution of the Dirichlet problem) and quite flexible (curve,
plane, sphere, ellipsoid)

+ Plane - fast, solvable via FFT
– Curve, Sphere, Ellipsoid - integral equation must be solved

• Other methods - global basis functions (sph. harmonics, ...), local
(wavelets, ...), collocation, combined strategies (google for more)

Novák et al. (UWB) Downward continuation 9 - 12 October, 2012 4 / 17



Introduction Basic tools

Basic options for continuation of potential data

• Gradient method - the function is developed into a Taylor series and

continued via f = f(0) + f ′

1! dx+ f ′′

2! dx
2 + ...

+ Very simple, flexible and very fast
– The derivatives f ′, f ′′, ... must be known
– Usually applicable for small differentials (dx)

• Poisson integral - standard tool for continuation of potential data

+ Rigorous (solution of the Dirichlet problem) and quite flexible (curve,
plane, sphere, ellipsoid)

+ Plane - fast, solvable via FFT
– Curve, Sphere, Ellipsoid - integral equation must be solved

• Other methods - global basis functions (sph. harmonics, ...), local
(wavelets, ...), collocation, combined strategies (google for more)

Novák et al. (UWB) Downward continuation 9 - 12 October, 2012 4 / 17



Introduction Basic tools

Basic options for continuation of potential data

• Gradient method - the function is developed into a Taylor series and

continued via f = f(0) + f ′

1! dx+ f ′′

2! dx
2 + ...

+ Very simple, flexible and very fast
– The derivatives f ′, f ′′, ... must be known
– Usually applicable for small differentials (dx)

• Poisson integral - standard tool for continuation of potential data

+ Rigorous (solution of the Dirichlet problem) and quite flexible (curve,
plane, sphere, ellipsoid)

+ Plane - fast, solvable via FFT
– Curve, Sphere, Ellipsoid - integral equation must be solved

• Other methods - global basis functions (sph. harmonics, ...), local
(wavelets, ...), collocation, combined strategies (google for more)

Novák et al. (UWB) Downward continuation 9 - 12 October, 2012 4 / 17



Introduction Basic tools

Basic options for continuation of potential data

• Gradient method - the function is developed into a Taylor series and

continued via f = f(0) + f ′

1! dx+ f ′′

2! dx
2 + ...

+ Very simple, flexible and very fast
– The derivatives f ′, f ′′, ... must be known
– Usually applicable for small differentials (dx)

• Poisson integral - standard tool for continuation of potential data

+ Rigorous (solution of the Dirichlet problem) and quite flexible (curve,
plane, sphere, ellipsoid)

+ Plane - fast, solvable via FFT
– Curve, Sphere, Ellipsoid - integral equation must be solved

• Other methods - global basis functions (sph. harmonics, ...), local
(wavelets, ...), collocation, combined strategies (google for more)

Novák et al. (UWB) Downward continuation 9 - 12 October, 2012 4 / 17



Step 1: From real orbit to a mean sphere Motivation

Step 1: From real orbit to a mean sphere (gradient method)

• Why? It can simplify (speed up) any further GOCE data processing
(gridding, SHA, ...)

• Why not? The GOCE orbit ~r is nearly circular: d~x = ∆~r is small
(|∆~r| ≤ 16 km)

• Preserves the time series

• f ′ = dV ij
dr can be computed with help of GOCE models

• Check: the data statistics/parameters should not change significantly
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Step 1: From real orbit to a mean sphere Simulation

We have used 9-point stencil for UD continuation of GOCE data

V contij = V GOCE
ij ±∆r

dV 0
ij

dr
dV 0

ij

dr
= {aV −4

ij − bV
−3
ij + cV −2

ij − dV
−1
ij + eV 0

ij + dV +1
ij − cV

+2
ij + bV +3

ij − aV
+4
ij }/dr

with a = 1
280

, b = 4
105

, c = 1
5
, d = 4

5
, e = 0
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Step 1: From real orbit to a mean sphere Simulation

Simulation - height vs. accuracy (∆r = 4dr)

• Estimated when applied to synthetic data from GOCE-only model

• Minimal accuracy = 0.1 mE with RMS ' 10−6 E

• ⇒ GOCE data are lucky, they can be UD continued to a mean
sphere with gradient method

Novák et al. (UWB) Downward continuation 9 - 12 October, 2012 6 / 17



Step 1: From real orbit to a mean sphere Real-data example

Real-data example - 2 months of data

• SDs of the original GOCE (LNOF) and continued data almost the
same

• ⇒ UDC from real orbit to mean sphere preserves spectral properties
• ⇒ Easily applicable to the GRF data
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Step 2: UDC from mean sphere to zero level Overview

Step 2: UDC from mean sphere to zero level (Poisson
integral)

• Gridding data from the previous step needed (we loose time series!)
• Regular grid is more suitable for surface quadratures
• We have adopted two strategies:

1 Iterative approach (Xu, 2007) based on spherical Poisson kernel
2 Direct integration with reciprocal spherical Poisson kernel (Novak,

2002)
• Poisson integrals used read Fk = Kk,lFl

T (P ) =
R(r2 −R2)

4π

ZZ
σ

T (Q)

l3
dσ

Tz(P ) =
R(r2 −R2)

4π

R

r

ZZ
σ

Tz(Q)

l3
dσ

Tzz(P ) =
R(r2 −R2)

4π

R2

r2

ZZ
σ

Tzz(Q)

l3
dσ
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Step 2: UDC from mean sphere to zero level Iterative algorithm

Iterative algorithm equipped by spherical Poisson integral

• Based on Xu et al. (2007, Geophysical prospecting) but on the
sphere

• It applies the upward continuation until the residuals decrease
δ = sp(Finput − Fi)

• It can be applied locally!

• We use the same kernel for all Vij :

Vij(P ) = R(r2−R2)
4π

R2

r2

∫∫
σ

Vij(Q)
l3

dσ

• Before doing so, set:
• i - number of iterations
• sp - “sensitivity” parameter
• tile/grid size wrt height
• Algorithm can be split to ladder-like algorithm
• ⇒ many degrees of freedom!
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Step 2: UDC from mean sphere to zero level Iterative algorithm

Iterative algorithm: noise-free example
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Step 2: UDC from mean sphere to zero level Noise-free example: Error amplification

Iterative algorithm: Error amplification (check ∆T )
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Step 2: UDC from mean sphere to zero level Noise-free example: Edge effect

Iterative algorithm: noise-free example (with edge effect)
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Step 2: UDC from mean sphere to zero level Real-data example

Iterative algorithm: real GOCE data

No filtering
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Step 2: UDC from mean sphere to zero level Real-data example

Iterative algorithm: real GOCE data

Filtered (anisotropic filter)
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Concluding remarks

Concluding remarks on downward continuation of GOCE data
(1. From real to mean sphere)

• GOCE orbit: δr ∈ 〈−16, 16〉 km

• Simple gradient method can be applied to data in any frame (GRF,
LNOF)

• dVij
dr can be computed from existing models

• Accuracy of GOCE data should “survive” this step

• Might less than 9-point stencil would also be satisfactory
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Concluding remarks

Concluding remarks on downward continuation of GOCE data
(2. From mean sphere to ground level)

+ DC of the GGs for h = 250 km is possible! Basic features recovered,
for N = 180 we got an agreement at 0.5 - 1 E level (best RMS
achieved for N = 130− 150)

+ Algorithm performs even at mE level for noise-free data (tested with
EGM2008)

– Required: gridding and LNOF (we loose time series!)

? Optimal DC empirical parameters must be found for a given tile and
spacing

• Anisotropic filtering recommended

? Still an open question until use of reprocessed/complete data
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Concluding remarks

Thank you!
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